Journal of Neurological Research And Therapy

Current Issue Volume No: 2 Issue No: 1

Research-article Article Open Access
  • Available online freely Peer Reviewed
  • Murky Water: Cyanobacteria, BMAA And ALS

    1 The University of Toledo, Department of Surgery, Division of Otolaryngology, 3000 Arlington Avenue, Toledo 

    Abstract

    Cyanobacteria have been implicated in the etiology of ALS for the past 50 years. The weakness of the theories of cyanobacteria or its neurotoxin, BMAA as the etiologic agent in ALS is the iniquitousness of cyanobacteria in the environment. In third world countries, clean water is far from commonplace, the exposure to cyanobacteria higher, yet the incidence of ALS is probably less than it is in developed countries. Even in the developed world, exposure to cyanobacteria is commonplace. Differences in the gut microbiome, possibly the presence of Proteobacteria, a protective agent against cyanobacteria toxins, may be important.

    Author Contributions
    Received Sep 18, 2016     Accepted Oct 08, 2016     Published Sep 21, 2017

    Copyright© 2017 F. Baugh Reginald.
    License
    Creative Commons License   This work is licensed under a Creative Commons Attribution 4.0 International License. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

    Competing interests

    The authors have declared that no competing interests exist.

    Funding Interests:

    Citation:

    F. Baugh Reginald (2017) Murky Water: Cyanobacteria, BMAA And ALS Journal of Neurological Research And Therapy. - 2(1):34-38
    DOI 10.14302/issn.2470-5020.jnrt-16-1293

    Introduction

    Introduction/Background

    High incidence of amyotrophic lateral sclerosis (ALS) occurred among the Chamorro natives in Guam back in the 1940s and 1950s, leading scientists to link cyanobacteria and one of its neurotoxin, beta-N-methyl amino-L-alanine (BMAA) to ALS. Subsequent findings of the regular biosynthesis of BMAA in the Baltic Sea combined with its possible transfer and bioaccumulation within major food webs, some ending in human consumption, has been alarming 1. A prevailing theory has been that long term, chronic exposure to low levels of BMAA through the environment, in areas with algae blooms, occurs through biomagnification which might cause ALS in genetically predisposed individuals. Recent studies from Scandinavia have been far less supportive, finding limited evidence for the theory among retail coastal seafood. BMAA was identified in blue mussel, oyster, shrimp, plaice, char and herring, but was undetectable in other samples (salmon, cod, perch and crayfish) casting doubt on biomagnification in many seafood networks humans eat 2. Others are more skeptical of any cyanobacteria or BMAA connection and believe poor reporting and analysis and prolific errors have weakened the research 3. Yet, research from plausible, rational studies showing a possible link have been published in credible journals.

    Affiliations:
    Affiliations: