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Abstract 

 Lipopolysaccharide (LPS) is a component of the outer membrane of gram negative bacteria. LPS 
challenging allows switching transcription of proinflammatory cytokines on via over stimulation of Toll-like 
receptors (TLRs) signaling pathway with subsequent pathogenic inflammatory response. We investigated the 
possible reproductive toxicity of LPS in male Wister albino rats. Oxidative stress markers, antioxidant status and 
caspase-3 activity were analyzed in testicular tissues of rats exposed to either saline or LPS (4 mg/kg BW, ip; 
0.18 of the LD50). The samples were collected at 6 h and 72 h after injection of LPS. A significant reduction in 
testicular reduced glutathione (GSH), glutathione-S-transferase (GST) and superoxide dismutase (SOD) was 
observed at 72 h compared to control group. Total antioxidant capacity was decreased at 6 h with additional 
significant reduction at 72 h. Catalase activity was reduced significantly at both 6 and 72 h. Malondialdehyde 
(MDA) was increased (P ≤ 0.05) in LPS injected rats without variation between 6 and 72 h. A significant 
increase in nitric oxide (NO) was observed at 72 h after injection. A time-dependent increase in LPS-treated 
groups was observed in the concentration of caspase-3.Histopathological analysis revealed degenerative 
changes and necrosis of seminiferous tubules after 6 h with further accumulation of eosinophilic edematous 
transudate in its lumen after 72 h. In conclusion, by increasing time of exposure, LPS induced lipid peroxidation, 
oxidative stress, reduced testicular antioxidant capacity and encouraged testicular apoptosis which could be 
possible mechanisms for impairment of testicular function. 
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Introduction 

 Lipopolysaccharide (LPS) is a glycolipid 

component of the cell wall of gram negative bacteria 

such as Escherichia and Salmonella species. The name 

of endotoxin is due to the biological activities that 

induced by LPS after entering the host organism [1]. LPS 

consists of lipid A part which is responsible for the toxic 

proinflammatory properties of LPS [2,3] and 

polysaccharide side chain part, which consists of a core 

oligosaccharide and the terminal O-specific chain antigen 

[4,5] that determines the serological specificity or the 

bacterial serotype [6]. LPS is considered as a molecular 

pattern related to the pathogen-associated molecular 

patterns (PAMPs] via which the bacteria can be 

recognized by specific host receptors called pattern 

recognition receptors (PRRs) [7]. LPS performs as a 

toxin via over stimulation of Toll-like receptors (TLRs)

signaling pathway, that promotes nuclear translocation 

of NF-kβ [8] and switches on transcription of 

proinflammatory cytokines such as IL-1β, IL-6 and TNFα 

that encourages pathogenic inflammatory responses [5, 

9]. Exposure to high doses of LPS triggers the 

production of the proinflammatory mediators which may 

result in a harmful condition termed oxidative stress [10, 

11]. Reactive oxygen species (ROS) are thought to be 

involved in the mechanism of LPS toxicity [12].  

 Male infertility is essentially a result of disruption 

in spermatogenesis process, which is based onreduction 

in sperm count, motility and viability, oxidative stress 

and disturbance in sex hormones [13]. Infections lead to 

an extreme production of ROS, resulting in an oxidative 

stress which impairs the sperm functions, as well as 

fertilization [14]. It was suggested that LPS inhibits 

human sperm motility by decreasing intracellular cAMP 

[15]. Previous study evaluated the adverse effects of 

LPS on male reproduction system identifying increased 

oxidative stress and proinflammatory stress markers in 

the testes leading to marked testicular dysfunction [16]. 

 We aimed in the present study to estimate the 

potential mechanisms for LPS to induce testicular 

dysfunction via measuring the antioxidant activity and 

oxidative stress, in addition the effect of LPS on the 

apoptotic gene marker, Caspase-3 in male albino rats. 

Histopathological analysis on testicular structure was 

also applied. 

 

Materials and Methods 

Chemicals 

 Lipopolysaccharide (LPS) (E. coli, serotype 

0111:B4; Sigma-Aldrich) was dissolved in distilled water.  

Rats in control group were administered intraperitoneal 

pyrogen-free 0.9% NaCl. 

Animals 

 Fifteen male Wister albino rats (3 months old) 

were purchased from Faculty of Medicine, Mansoura 

University, Mansoura, Egypt. The animals were allowed 

for accommodation at 2 weeks for the laboratory 

conditions (12 h light/dark cycles) before             

commencement of the experiment. Animals were 

received feed and water ad libitum. Animals received 

human care in compliance with the guidelines of animal 

care of the National Institutes of Health, and all animals 

applications were performed in accordance with the 

Ethics Committee of the National Research Centre, 

Egypt, registration number (09/189). 

Experimental Design 

 A total of 15 rats were divided into control          

(n = 5) and LPS treated groups (n = 10). In the second 

group, testes were collected after 6 h (n=5) and after 72 

h (n=5). Control rats received intraperitoneal injection of 

pyrogen-free 0.9% NaCl. According to Nezić et al (2009) 

[17], single intraperitoneal injection of non-lethal dose 

of LPS was administered to the group treated with LPS 

(4 mg/kg BW; 0.18 of the LD50 [22.15 mg/kg]) [17] Rats 

were sacrificed and testes were collected at 6 and 72 h 

time points after LPS injection. 

Tissue Preparation 

 One g of each testis was washed by PBS (pH 

7.4) and then homogenized in nine volume of PBS. 

Tissue homogenate was further centrifuged at 4000 rpm 

for 20 minutes at 4⁰C and stored at -80⁰C according to 

Ferdandez-botran et al. (2002) [18] till antioxidant and 

oxidative stress markers were performed. 

Biochemical Analysis: 

Testicular Reduced Glutathione Concentration: 

 Reduced glutathione in testicular homogenate 

was determined using the method of Beutler et al. 

(1963) [19]. 5, 5 dithiobis 2- nitrobenzene (DTNB) was 
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used to give yellow colored complex in conjugation with 

reduced glutathione 

Testicular Glutathione-S-tTransferase Activity: 

 GST activity was determined by measuring the 

conjugation of 1- chloro- 2, 4-dinitrobenzene (CDNB) 

with reduced glutathione according to method of Habig 

et al. (1976) [20]. 

Testicular Superoxide Dismutase Activity: 

 Tissue homogenate of testis was mixed with 

working solution contained with 0.5mM phosphate 

buffer, 0.3mM NADPH+ and 0.5mM nitroblue tetrazolium 

for a min then the reaction was further inhibited by 

phenazine methosulphate. The percent of inhibition of 

superoxide radical was estimated and multiplied by 3.75 

to determine SOD activity according to Nishikimi et al. 

(1972) [21]. 

Total Antioxidant Capacity: 

 Capacity of total antioxidant capacity was 

determined according to Koracevic et al. (2001) [22]. 

Capacity of total antioxidant was determined with 

conjugation of hydrogen peroxide with 3,5,dichloro-2-

hydroxy benzensulphonate to form pinky color 

compound that inversely proportional with total 

antioxidant capacity of samples. 

Testicular Catalase Activity: 

 According to Aebi (1984) [23], catalase activity 

was determined through the enzymatic reaction initiated 

via binding of the produced hydrogen peroxide with 3,5-

Dichloro-2-hydroxybenzene sulphonic acid and 4-

aminophenazone. The produced colored complex is 

inversely proportional with catalase activity in tissues.  

Oxidative Stress Marker (Lipid peroxidation): 

 The levels of lipid peroxidation expressed as 

malondialdehyde concentration was measured 

spectrophotometrically followed the method of Draper 

and Hadley (1990) [24]. Thiobarbituric acid reacts with 

MDA in acid medium to form reactive product. The 

absorbance of the resultant pink product can be 

measured at 534 nm. 

Nitrosative Stress Marker: 

 The level of nitrite was used to determine the 

extent of nitrosative stress on testicular tissues 

according to the method of Montgomery and Dymock 

(1961) [25]. In the presence of nitrite and in an acidic 

medium, the formed nitrous acid diazotized sulphanila-

mide and the product is coupled with N-(1-naphthyl) 

ethylenediamine. The resulting azodye has a bright 

reddish-purple color which can be measured at 540 nm. 

Flowcytometric Determination of Caspase 3: 

 The determination of caspase as an apoptotic 

marker was occurred using flow cytometric technique 

according to technique of Tribukait (1987) [26]. 

Testicular tissues were washed in isotonic tris EDTA 

buffer (3.029 g of 0.1 M tris (hydroxymethyl  

aminomethane , 1.022 g of 0.07 M sodium chloride and 

0.47 g of 0.005 M EDTA) and were further suspended in 

absolute ethanol for accomplishing of fixation step of 

testicular tissues. The fixed tissues was conjugated by 

adequate dilution (1:50) of caspase-3 primary antibody 

(Abcam, USA), that was further mixed with secondary 

antibodies (IgG) (Abcam, USA) with the appropriate 

dilution (1:2000). Finally, cells were suspended in 

solution containing PBS/BSA. After staining procedures 

were occurred, measurements of positive cells was 

determined using flow cytometer device (FACS caliber 

flow cytometer "Becton Dickinson , Sunnyvale , CA, USA) 

equipped with a compact air cooked low power 15 

mwatt argon iron laser beam (488 nm). 

Histopathological Examination: 

 The testes were dehydrated in graded ethanol 

and embedded in paraffin wax. 5 μm thick paraffin 

embedded sections were cut and routinely stained with 

hematoxyline and eosin according to Bancroft et al 

(1996) [27]. Each section was examined by light 

microscopy. 

Statistical Analysis: 

 The results were expressed using one way 

ANOVA to determine the difference between means in 

every group. Least significance difference using 

Duncan’s post-hoc test was used to determine 

statistically significance difference between means at a 

significant level 0.05 where P ≤ 0.05. All data were 

reported as means ± SEM. Statistical analyses were 

done using SAS® (version 9.2, SAS Institute, Cary, NC, 

USA). For all analyses, P ≤ 0.05 was defined as 

significant. 
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Results 

Effects of LPS on Antioxidant Activity 

Antioxidant Status: 

 Glutathione concentration (GSH) showed a 

significant reduction at 72 h (15.42 ± 0.678 mg/g) after 

LPS injection compared to 6 h (17.58 ± 0.174 mg/g) 

exposure and control (18.17 ± 0.593 mg/g) groups 

(Figure 1a). GST showed a significant decrease after 72 

h (0.677 ± 0.009 U/g) of LPS exposure in comparison 

with control (1.343 ± 0.015 U/g) and 6 h (0.967 ± 

0.152 U/g) exposure (P ≤ 0.05) (Figure 1b) . SOD 

activity was reduced at 6 h (238.82 ± 7.78 U/g) without 

significant variation compared to control (242.13 ± 7.83 

U/g) while the reduction at 72 h (207.81 ± 8.14 U/g) 

was significantly varied compared to control and 6 h 

groups (P ≤ 0.05) (Figure 1c).   

Total Testicular Antioxidant Capacity: 

 A significant reduction in total antioxidant 

capacity was observed at 6 h (0.66 ± 0.017μmol/g) with 

additional decline at 72 h (0.203 ± 0.026 μmol/g) 

compared to control group (0.947 ± 0.009 μmol/g) (P ≤ 

0.05) (Figure 2a). Corresponding to antioxidant capacity 

of rats exposed to LPS, the activity of catalase was 

decreased significantly at 6 h (0.187 ± 0.035 U/g) and 

72 h (0.17 ± 0.012 U/g) compared to control group 

(0.317 ± 0.019 U/g) (P ≤ 0.05) without significant 

variation between LPS-treated groups (Figure 2b). 

Oxidative Stress Marker: 

 The levels of lipid peroxidation (MDA) in rats 

exposed to LPS showed a significant increase after 6 h 

(12.41 ± 0.49 nmol/g) and 72 h (10.62 ± 0.50 nmol/g) 

of exposure in comparison with control group (7.38 ± 

0.50 nmol/g) (P ≤ 0.05). Although there was a reduction 

in testicular MDA levels after 72 h compared to 6 h, but 

this reduction was non-significant (P > 0.05)          

(Figure 3a).  

Nitrosative Stress Marker: 

 A robust increase occurred (P ≤ 0.05) in 

testicular nitrite levels after 72 h (35.4 ± 1.12 nmol/g) 

after LPS injection compared to control group (25.61 ± 

3.45 nmol/g). The increase of nitrite level at 6 h was 

insignificant (31.2 ± 0.46 nmol/g) (Figure 3b).  

Effect of LPS on Apoptotic Factor Caspase -3 

 The concentration of caspase-3 showed a 

marked increase (P ≤ 0.05) at either 6 h (32.24 ± 2.15) 

or 72 h (54.74 ± 3.29) compared to control group 

(15.12 ± 1.22) (Figure 4). 

Histopathological Analysis of Testicular Tissue 

 Seminiferous tubules showed normal 

spermatogenic epithelium, Sertoli cells and interstitial 

tissue in control group (Figure 5a), whereas testes 

collected 6 h after LPS injection displayed degenerative 

changes and necrosis of seminiferous tubules (Figure 

5b). After 72 h, necrosis of spermatogenic epithelium 

lining seminiferous tubules and accumulation of 

eosinophilic edematous transudate in its lumen were 

observed (Figure 5c). 

Discussion 

 Testicular tissues may lack an adequate oxygen 

supply, so testes may suffer dramatically from oxidative 

stress due to the high levels of unsaturated fatty acids 

and excessive production of ROS that could be produced 

from leakage of mitochondrial membrane and might 

impact both spermatogenic and steroidogenic functions 

[28, 29]. At the testicular level, oxidative stress can be 

modulating steroidogenic capacity of Leydig cells [30] 

besides disrupting ability of germinal epithelium to 

differentiate spermatozoa [31] which may result in 

infertility [32]. 

 The capability of LPS for induction of oxidative 

stress in testicular tissues was previously studied in mice 

[33]. It was reported that the LPS could possibly induce 

oxidative stress in rats due to the disruption in germ cell 

layer in seminiferous tubules which increased the 

production of proinflammatory cytokines and generation 

of ROS [34]. Moreover, the LPS would possibly increase 

the activity and concentration of nitric oxide synthetase 

(NOS) in testes that produced excessive amount of nitric 

oxide causing nitrosative stress in adult rats [35]. We 

aimed to reveal the ability of LPS to induce oxidative 

stress as well as apoptosis in short periods of time (6 

and 72 h) in testicular tissue of rats as possible 

mechanisms for testicular dysfunction. 

 In the current study, GSH concentration showed 

a significant decrease after 72 hours of LPS treatment, 

and occured a decrease in GST activity in comparison 

with control group. It was shown the induced infection 
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Figure 1: a) GSH concentration, b) GST activity and c) SOD activity in control and LPS-treated 

groups  (4 mg/kg BW ip). Results are expressed as mean ± SEM. The different letters are  

statistically significant  (P ≤ 0.05). 

Figure 2: a) Total antioxidant capacity and b) Catalase activity in control and LPS-treated 

groups (4 mg/kg BW ip). Results are expressed as mean ± SEM The different letters are statis-

tically significant (P ≤ 0.05). 
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 Figure 3: a) MDA concentration and b) NO concentration in control and LPS-treated groups (4 

mg/kg BW ip). Results are expressed as mean ± SEM. The different letters are statistically  

significant (P ≤ 0.05). 

Figure 4: Relative expression of caspase-3 in 

testicular tissues of either control or            

LPS-treated rats (4 mg/kg BW ip). Results are     

expressed as mean ± SEM. The different letters 

are statistically significant (P ≤ 0.05). 
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Figure 5: Histopathological results. a) Control group: seminiferous tubules with normal          

spermatogenic epithelium (arrow), normal Sertoli cells and normal interstitial tissue. b) After 6 

hours seminiferous tubules display degenerative changes and necrosis of spermatogenic         

epithelium (arrow) and abnormal Sertoli cells. c) After 72 h necrosis of spermatogenic            

epithelium lining seminiferous tubules and accumulation of eosinophilic edematous transudate 

in its lumen. 
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using LPS was capable of encouraging oxidative stress 

that concurrently would result in decrease GSH in 

human dendritic cells [36]. In another study, GST 

activity showed a significant decrease after Cyanobacte-

rium LPS treatment in zebra fish [37). Similarly, the 

activity of hepatic GST showed a significant decline 

when galactosamine /lipopolysaccharide were injected to 

rats [38]. 

 As a result of the oxidative damage and 

generation of free radicals, the concentration of total 

antioxidant capacity revealed a significant gradually 

reduction by the increase with time of LPS exposure. In 

a similar study, rats administered 30 mg/kg LPS showed 

a significant reduction in total antioxidant capacity that 

was measured as ferric reducing ability of plasma [39]. 

The reduction of antioxidant capacity was followed by a 

significant decrease in testicular catalase activity by 54% 

after 72 hours of treatment which was further confirmed 

by the study of Spolarics and Wu (1997) [40], whom 

found that LPS treatment would result in a significant 

reduction in catalase activity by 45% in Kupffer cells 

[40). Such reduction reflects the inability of testicular 

cells to eliminate H2O2 produced by the inflammatory 

events resulting from LPS injection or may be due to 

enzyme activation caused by ROS generated in testicular 

cells [41, 42]. 

 SOD activity showed a significant decrease after 

72 hours of LPS treatment which was observed in 

broilers treated with 0.5 mg/ml LPS attributing to 

disturbance in antioxidant defense system [43]. 

 One of the various effects of oxidative stress is 

peroxidation of unsaturated fatty acids in membrane. 

The degree of lipid peroxidation, measured as MDA, was 

used to explain the role of LPS in peroxidation of lipids in 

testicular tissues. The concentration of MDA was 

increased immediately after 6 h of LPS administration 

with slight non-significant reduction at 72 h. Testicular 

MDA levels increased at the same dose of LPS at 6 h and 

returned to normal level at 12 and 72 h [44]. Likewise, 5 

mg/kg LPS increased MDA levels in albino rats with 

reduction in testicular antioxidant activities [41]. A 

robust increase the levels of lipid peroxidation were 

observed with higher doses of LPS in Fischer rats [45]. 

Also, LPS (200 μg/mouse, for 2 h) induced lipid 

peroxidation products (MDA and 4-hydroxynonenal) in 

isolated mice Leydig cell homogenates [46]. Moreover, 

LPS- treated Sertoli cells of adult rats (50 μg/ml for 12 

h) showed augmentation in H2O2 and lipid peroxidation 

with reduction in activities and concentration of the 

antioxidant parameters (GSH, GST, SOD, CAT) [47]. 

Ability of LPS (1 μg/ml, for 12 h) to exert oxidative 

stress was also verified using primary culture of rat 

Leydig cells [48].  

 The levels of nitrosative stress were determined 

using the levels of nitric oxide production in testicular 

tissues. NO was increased significantly after 72 h of 

treatment which was observed as well in macrophage 

cell line due to induction of nitric oxide synthetase 

expression in macrophage [49]. In a study performed by 

O'Bryan et al. (2000) [50], testicular tissues of rats 

showed a significant increase in NO production due to 

up-regulation of inducible nitric oxide synthetase (iNOS) 

after LPS administration [50].  

 Stangelet al. (1996) [51] found that ROS and 

NO were capable of inducing apoptosis in rat skeletal 

myoblast [51]. Apoptosis is a programmed cell death 

which occurs physiologically in testicular germ cells to 

balance their number to that of Sertoli cells [52]. 

Apoptosis is generated by various pathways, all initiate 

Caspase pathway (Caspase 8 and 9) that in turn activate 

the effector Caspase 3 [53, 54]. The results of the 

present study showed early induction of apoptosis 

through increase in Caspase-3 concentration (6 h), 

which could be due to the induction of testicular 

oxidative stress as well as increase in NO levels. Pro-

inflammatory cytokines that were induced by LPS is 

another mechanism by which apoptosis could be 

induced through TNF-dependent pathway [55]. Besides, 

LPS was capable of inducing apoptosis in hepatocyte 

which was followed by an increase in production of 

Caspase-3 in co-culture of hepatocyte and Kupffer cells 

[56]. LPS administered to mice (intraperitoneal, 0.1 mg/

kg, 7 days) caused increase of apoptotic germ cells via 

Fas/ FasL system up to 5 weeks after LPS exposure and 

observed peak at 24 h [57]. Additionally, Leydig cells 

incubated for 12 h with LPS was showed increase in 

Caspase 3 activity [58]. 

 The aforementioned alterations that were 

observed in the present work were supported by the 

histopathological examination of the testicular tissue. 
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After 6 h, seminiferous tubules showed necrosis and 

degenerative changes, meanwhile, testes collected 72 h 

post LPS injection, showed necrosis of spermatogenic 

epithelium lining seminiferous tubules with eosinophilic 

edematous transudate in its lumen. Similarly, at the 

same dose of LPS, accumulation of immature germ cells 

in the lumen of seminiferous tubules was observed after 

6 h of LPS injection. While at 72 h, large numbers of 

immature germ cells were observed in the lumen of 

epididymis with intercellular gaps in seminiferous 

epithelium [44]. The histopathological lesions in rat 

testes after single intraperitoneal injection of LPS 

revealed normal structure of seminiferous tubules at 3 

and 6 h after LPS injection; whereas seminiferous 

epithelium showed degeneration and sloughing at 24 

and 72 h time points [41]. At the same dose of LPS, 

seminiferous tubules showed thinning in its epithelium 

lining disordered architecture and uneven arrangement 

of spermatogenic cells, together with reduced number of 

mature sperms and noticeable shedding of spermato-

genic cells in the lumens of seminiferous tubules were 

observed. Such lesions become more pronounced by 72 

h after LPS injection [59].  

 The data of the current work are in consistence 

with other studies proved that oxidative stress is 

considered as a key factor in steroidogenesis and 

spermatogenesis alteration with subsequent infertility 

[41, 50, 60]. 

 In conclusion LPS can induce oxidative stress 

after short period from exposure as early as 6 h and 

continue up to 72 h resulting from a significant decrease 

in antioxidant defense enzymes with an increase in lipid 

peroxidation and NO levels. The LPS-induced oxidative 

stress could be accompanied with apoptosis through 

activation of Caspase-3 resulting in impairment in 

testicular functions. This effect is a crucial for the 

reproductive performance and future fertility of male 

due to the LPS effect on germinal epithelium of testes. 
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