Nutritional deficiencies in pregnancy after surgery for morbid obesity

Andreas Alexandrou¹, George Tzikos², Sofia Chatzi², Areti Augoulea²*, Anastasios Angelou¹, Adamantios Michalinos⁴, Irene Lambrinoudaki²

¹.Department of Surgery, National and Kapodestrian University of Athens, Medical School, Laiko General Hospital, 17 Agiou Thoma St, GR-11527 Athens, Greece
².Department of Obstetrics and Gynecology, National and Kapodestrian University of Athens, Medical School, Aretaieio Hospital, 76 Vas. Sofias Ave, GR-11528, Athens, Greece

Abstract

Objectives: The rate of morbid obesity among women of reproductive age continues to rise worldwide. Surgical treatment remains the most effective mean to face it. Anatomical, physiological and nutritional modifications lead to several challenges for pregnancy after bariatric procedures. In spite of routine supplementation after bariatric surgery, vitamin and mineral deficiency frequently appear in bariatric pregnancies. The aim of this review is to summarize the existing data on the prevalence and management of nutritional deficiencies in pregnancy after bariatric surgery.

Methodology: A comprehensive search of Pubmed Database was conducted for English-language studies using a list of key words.

Results: The most common post-operative deficiencies in pregnancy include iron, vitamin B12, folate, vitamin D and magnesium deficiency. Less common are selenium, vitamin A, vitamin B6 and vitamin C deficiency. Finally, copper, vitamin K, vitamin B1, vitamin E and albumin deficiencies are considered to be relatively rare.

Conclusions: Pregnancy after bariatric surgery has been proven to be safe for both the mother and the fetus. However, there is still the risk of significant nutritional deficiencies with adverse effects on pregnancy and lactation. As a result, a thorough customized nutritional assessment is mandatory for every woman in reproductive age who has undergone a bariatric operation, with strict regular follow-up during pregnancy and lactation.

Corresponding author: Anastasios Angelou MD 38, Vlachaki street, Athens, GR-11525, Athens, Greece
Tel: +30 213 2061098, Fax: +30 213 2061098, e-mail: aangelou@med.uoa.gr

Keywords: bariatric surgery; morbid obesity; nutrition; pregnancy; vitamin deficiency

Running title: nutrition, pregnancy & bariatric surgery

Received: Sep 16, 2017 Accepted: Sep 24, 2017 Published: Sep 26, 2017
Introduction

Obesity has taken an epidemic form during the last two decades. The World Health Organization (WHO) assessed than in 2008 there were more than 1.4 billion overweight and more than half a billion obese adults. Excess body weight is the 5th leading risk factor for global deaths. More than 2.8 million adults die each year due to being overweight or obese[1]. It is estimated that in Greece, the prevalence of obesity in the adult population is approximately 17.3%, 0.8 units over the mean prevalence of Europe[2]. All age groups face this problem but the incidence is greater for females. About 25% of women meet the obesity criteria, one-third of which are in the reproductive age[3].

Maternal obesity has turned out to be one of the most commonly occurring risk factors for pregnancy, delivery and postpartum complications, not to mention the negative effects on fertility as it is characterized by polycystic ovarian syndrome leading to oligo- or amenorrhea[4].

Maternal risks associated with obesity include increased prevalence of stillbirth and intrauterine fetal death, preterm labor, miscarriage, fetal chromosomal anomalies and macrosomia. Obese women are more likely to suffer from thrombembolism, gestational diabetes and pre-eclampsia. Moreover dysfunctional labour, cesarian section, perioperative complications and postpartum hemorrhage are more common in these women [5,6].

Therefore, weight loss, ideally before conception, appears imperative. Bariatric surgery (BS) remains the only effective means of treatment for morbid obesity[7]. It promotes weight loss, ameliorates related comorbidities and improves reproductive function and infertility. Pregnancy outcome following bariatric surgery depends on the procedure type that has been performed.

Two of the most common bariatric procedures are Roux-en -Y gastric bypass (RYGBP) and the vertical sleeve gastrectomy (VSG). During RYGBP, the stomach is divided and a small gastric pouch that can hold approximately 30ml is created, thus inducing a restriction of the amount of food the recipient can ingest. Subsequently, the jejunum is divided 0.6 -1 meter distally to the ligament of Treitz with the distal segment anastomosed to the gastric pouch (gastro-jejunal anastomosis, GJ), thus reducing the absorbing capacity of the alimentary tract. Eventually, the continuity of the alimentary tract is restored with the construction of a jeuno-jejunal anastomosis (JJ) 1-1.5 meters distally to the gastro-jejunal anastomosis. So RYGBP is a combined restrictive and malabsorptive procedure. The VSG on the other hand is a purely restrictive procedure. The greater curvature of the stomach is resected, leaving a narrow vertical tube that can hold a volume of approximately 150 ml [7,8]. This reduction of the gastric capacity along with the loss of appetite, induced by the lower levels of ghreline, an orexigenic peptide normally secreted by the cells of the gastric fundus which is resected, result in considerable excess weight loss with profound effects on the general health status.

Nevertheless, in both techniques the anatomy of the gastrointestinal tract is modified and this leads to micronutrient deficiencies. Risk factors for this include preoperative malnutrition, decreased food intake, food intolerances, excessive vomiting, inadequate nutrient supplementation and nutrient malabsorption. All of these problems are amplified for women in pregnancy or lactation since during both of these conditions the demands for micronutrients are increased[3,7]. Women of reproductive age are advised to avoid pregnancy for at least one year after surgical treatment of morbid obesity, but since at some point this will definitely occur for an increasing number of women, a review of the existing data concerning the nutritional status and needs after bariatric surgery can be very useful for any clinician dealing with these patients.

Methodology

A comprehensive search of Pubmed Database was conducted between April and May 2014. The review covered a period from 1991 to 2014. The keywords which were used individually or in combination were: bariatric surgery (BS), obstetric outcome, nutritional deficiencies, iron, Vitamin D, B12, B6, B1, C, A, E, K, folate, albumin, zinc, magnesium, calcium, biotin, copper, selenium and supplementation.

Results

IRON: Many studies have shown that iron deficiency exists already pre-operatively in obese patients and more particularly in female bariatric surgery patients of childbearing age due to heavy menstrual periods. Even
more, all patients after bariatric surgery face a decrease in the production of hydrochloric acid, subsequently contributing to a lower iron uptake, since the Fe^{2+} to Fe^{3+} conversion is reduced, due to the resection of 75-80% of the stomach and the administration of PPIs (proton pumps inhibitors). Furthermore red meat, which is rich in iron, is less well-tolerated after BS [9-11]. As a result iron deficiency often is seen among bariatric patients who have undergone RYGBP as this procedure leads to iron malabsorption and reduced food intake but also after VSG due to lower acid content in the stomach. As a result, iron deficiency is one of the most common nutritional deficiencies after bariatric surgery (Table 1) [10,12-15]. In 2014, Alexandrou et al, in their pilot study have reported that in 40 patients undergoing BS, 30% of them developed iron deficiency and 7% ferritin deficiency after a 4-year follow up [16] . During the same year, Van Rutte et al, found that in 200 patients who underwent VSG, one year post-operatively, 37 of them (18,5%) had iron deficiency and in 16 of them (8%) ferritin levels were below the normal range. Before the operation the prevalence of iron and ferritin deficiency was 38% and 7% respectively[17] . In 2012, two studies reported iron deficiency from 0% - 10.5% 1 to 5 years postoperatively [18,19].

The main cause of anemia in pregnancy is iron deficiency. Pregnancy anemia can be aggravated by various conditions such as uterine or placental bleedings, gastrointestinal bleedings, and peripartum blood loss. In addition to the general consequences of anemia, there are specific risks during pregnancy for the mother and the fetus such as intrauterine growth retardation, prematurity, feto-placental miss ratio, and higher risk for peripartum blood transfusion [3,7,20,21].

VITAMIN B12: Vitamin B12 deficiency is also very common before and after bariatric surgery (Table 2). Its preoperative prevalence ranges between 3-18%[22-25]. After bariatric surgery the absorption of the B12 may be impaired at different levels depending on the type of procedure. Absence of acid environment following gastric bypass surgery, inadequate secretion of intrinsic factor and malabsorption result in the decrease of vitamin B12 absorption in the terminal ileum leading to B12 deficiency [3]. Two studies have found that cobalamin deficiency after BS was 11,5% and 5%, after a one year and a four year follow-up, respectively [16,17] . Moreover, there is another study which has reported that in 41 patients having undergone BS, vitamin B12 deficiency was 20% post-operatively [22] . In addition, Pech et al, found that in their two different studies, the need for supplementation after BS procedure in a total of 182 patients was between 42 and 46,3% during the first two postoperative years, and vitamin B12 levels remained clearly within the lower third of the reference ranges during this period, which means that without the supplementation, a vitamin B12 deficiency would likely

Table 1. Prevalence of iron or ferritin deficiency after bariatric surgery.

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Number of patients</th>
<th>Years of follow up</th>
<th>Prevalence of iron deficiency postoperatively (%)</th>
<th>Prevalence of ferritin deficiency postoperatively (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Van Rutte et al.[17]</td>
<td>200</td>
<td>1</td>
<td>18.5</td>
<td>8</td>
</tr>
<tr>
<td>2013</td>
<td>Alexandrou et al.[16]</td>
<td>40</td>
<td>4</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>2013</td>
<td>Coupaye et al.[43]</td>
<td>30</td>
<td>1</td>
<td>NR</td>
<td>30</td>
</tr>
<tr>
<td>2013</td>
<td>Eltweri et al.[22]</td>
<td>41</td>
<td>NR</td>
<td>NR</td>
<td>8</td>
</tr>
<tr>
<td>2012</td>
<td>Saif et al.[19]</td>
<td>82</td>
<td>1 / 3 / 5</td>
<td>3 / 10.5 / 0</td>
<td>8.6 / 15.8 / 5.6</td>
</tr>
<tr>
<td>2012</td>
<td>Damms-Machado et al. [18]</td>
<td>54</td>
<td>1</td>
<td>4.3</td>
<td>NR</td>
</tr>
<tr>
<td>2010</td>
<td>Aarts et al.[104]</td>
<td>60</td>
<td>1</td>
<td>43</td>
<td>NR</td>
</tr>
<tr>
<td>2010</td>
<td>Gehrer et al.[27]</td>
<td>50</td>
<td>3</td>
<td>18</td>
<td>NR</td>
</tr>
<tr>
<td>2009</td>
<td>Hakeam et al.[37]</td>
<td>61</td>
<td>1</td>
<td>4.9</td>
<td>NR</td>
</tr>
<tr>
<td>2009</td>
<td>Toh et al.[105]</td>
<td>64</td>
<td>1</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

NR: Not Reported
have occurred [23,24]. In three more studies, vitamin B12 deficiency fluctuated between 0% and 17.2% one year after BS [18,25,26] and Gehrer et al., reported that cobalamin deficiency after a 3-year follow-up in 50 patients was 18% [27]. Apart from the obvious hematologic effects, low concentration of cobalamin may result in elevation of serum homocystein. Hyperhomocysteinemia is known to be directly related to early loss of pregnancy. Moreover, inappropriate levels of B12 during pregnancy due to lower intake can result in neurobehavioral disorders and anemia in the infants [28,29].

FOLATE (VITAMIN B9): Folate absorption occurs along most of the small intestine, mainly in the duodenum and in the jejunum, and depends on pH level, mechanisms of the intestinal wall which have to do with nutrient’s transport, and saturation points [30,31]. After bariatric surgery, folic acid can be absorbed throughout the entire intestinal tract, through mechanisms of adaptation [15]. Therefore, folate deficiency after BS ensues primarily due to low intake of folate-rich food, such as legumes, lettuce and green leafy vegetables, and/or due to vitamin B12 malabsorption [32,33]. If maternal folate stores are insufficient prior to conception, the risk of folic acid deficiency is higher and is associated with fetal neural tube disorders (NTDs), while also the risk of an adverse pregnancy outcome such as a preterm delivery and birth defects in the following pregnancy increases. [20, 42]. According to the results of the reviewed studies (Table 3), pre-operative folate deficiency has been estimated to exist in up to 54% of the subjects, whereas recent studies from the USA support that this prevalence is much lower, about 0-6% [34-36]. Five studies found that the prevalence of folic acid deficiency one year after BS ranges between 0% and 15% [17,19,25,26,37]. Furthermore, Ruiz-Tovar et al. found that in 30 BS patients the prevalence of folic acid deficiency was 0% after a two-year follow-up. On the same wavelength, Toh et al. observed in their study that none of the patients developed folate deficiency one year postoperatively, too[26]. On the other hand, Gehrer et al., found the highest prevalence of this deficiency in the literature, which was 22% in fifty patients 3 years after the BS [27,38]. Finally, Aarts et al. and Hakeem et al. found in their studies that folate deficiency occurred in 15% and 9.8% of their patients respectively, one year after VSG [25,37].

VITAMIN D, CALCIUM, PARATHORMONE (PTH): The mechanisms which affect calcium metabolism after-

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Number of patients</th>
<th>Years of follow-up</th>
<th>Prevalence of vitamin B12 deficiency postoperatively (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Van Rutte et al.[17]</td>
<td>200</td>
<td>1</td>
<td>11.5</td>
</tr>
<tr>
<td>2013</td>
<td>Alexandrou et al.[16]</td>
<td>95</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2013</td>
<td>Eltweri et al.[22]</td>
<td>41</td>
<td>NR</td>
<td>20</td>
</tr>
<tr>
<td>2012</td>
<td>Moizê et al.[44]</td>
<td>61</td>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>2012</td>
<td>Saif et al.[19]</td>
<td>82</td>
<td>1 / 3 / 5</td>
<td>2.9 / 0 / 0</td>
</tr>
<tr>
<td>2012</td>
<td>Damms-Machado et al. [18]</td>
<td>54</td>
<td>1</td>
<td>17.2</td>
</tr>
<tr>
<td>2010</td>
<td>Aarts et al.[104]</td>
<td>60</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2010</td>
<td>Gehrer et al.[27]</td>
<td>50</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>2009</td>
<td>Toh et al.[105]</td>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NR: Not Reported
voking secondary hyperparathyroidism is frequently ob-
served post-operatively. However, serum calcium levels
are usually within the normal ranges [11,39-42]. Four
different studies with one year follow up reported that
the prevalence of vitamin D deficiency fluctuated be-
tween 39 and 70.4 % and true secondary hyperparathy-
roidism occurred in 18 and 39% of the patients. Howev-
er, it was found that calcium levels were within the nor-
mal ranges for almost all the patients in all these studies
[17,18,25,43] In addition, one study with 40 individuals
reported that four years after BS, hypovitaminosis D was
found in 56,3% of the patients and elevated levels of
PTH in 43,3% of them [16]. Furthermore, on the same
wavelength was also the study of Saif et al., who found
that 5 years after, BS vitamin D deficiency and hy-
perparathyroidism were present in 42% and 58,3% of
82 patients respectively. However, calcium levels were
within normal values [19]. On the other hand, Moize et
al, did not find any vitamin deficiency D, 5 years after BS
in 61 patients although, it should be noticed that the
prevalence of hypovitaminosis D, 4 years after the pro-
cedure, was 44,4% [48]. The prevalence of calcium defi-
ciency was 12,5% and hyperparathyroidism was present
in 87,5% of them. [44] Furthermore, in another study,
the prevalence of Vitamin D deficiency and elevated PTH
was only 3,3% for both markers in 30 patients 2 years
after BS, whereas, pre-operatively it was 96,7% and
20% respectively[38]. Finally, Gehrer et al, reported in
their study that hypovitaminosis D and elevated levels of
PTH was found in 32% and 14% of 50 patients, who
underwent BS, after a 3-year follow-up, with calcium
levels within normal ranges for all of them [27]. Data
regarding the frequency of vitamin D deficiency, calcium
deficiency and hyperparathyroidism after bariatric sur-
gery is presented in Table 4.

Pregnancy is characterized by many hormono-
logical and metabolic changes [45] and vitamin D defi-
ciency is relatively common, especially in obese women
[46,47] . Bodnar et al. documented a significantly higher
percentage of vitamin D deficiency in obese pregnant
women. Bariatric surgery also can lead to a postopera-
tive vitamin D deficiency in pregnant women [55]. Ma-
ternal vitamin D deficiency is associated with a variety of
maternal and fetal complications, such as pre-eclampsia,
gestational diabetes and a higher risk of asthma and
schizophrenia in childhood [48]. The exact mechanism
by which vitamin D can facilitate the onset of pre-
eclampsia is unclear [49,50]. Another important obser-
vation is that maternal vitamin D levels can influence the
bone status of the newborn. Viljakainen et al. showed a
significant smaller tibia mineral content in the newborns
of pregnant women with lower levels of 25(OH)D during
pregnancy [50] .

ZINC: Zinc is a trace element which is only second
to iron in concentration in the human body [51]. Zinc
plays a pivotal role in the cellular metabolism, being es-
sential for more than three hundred enzymatic reactions
[52]. Prior to bariatric surgery, serum zinc levels in
obese women are generally lower than in healthy ones
[53]. Zinc deficiency after bariatric surgery should al-
tways be considered, especially for pregnant women,
since many factors could contribute to it. These include
bypassing intestinal segments of zinc absorption duode-

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Number of patients</th>
<th>Years of follow-up</th>
<th>Prevalence of folate deficiency postoperatively (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Van Rutte et al.[17]</td>
<td>200</td>
<td>1</td>
<td>12.5</td>
</tr>
<tr>
<td>2013</td>
<td>Eltweri et al.[22]</td>
<td>41</td>
<td>NR</td>
<td>3</td>
</tr>
<tr>
<td>2012</td>
<td>Saif et al.[19]</td>
<td>82</td>
<td>1 / 3 / 5</td>
<td>8.8 / 5.5 / 0</td>
</tr>
<tr>
<td>2012</td>
<td>Damms-Machado et al. [18]</td>
<td>54</td>
<td>1</td>
<td>13.8</td>
</tr>
<tr>
<td>2011</td>
<td>Ruiz-Tovar et al.[106]</td>
<td>30</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>Aarts et al.[104]</td>
<td>60</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2010</td>
<td>Gehrer et al.[27]</td>
<td>50</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>2009</td>
<td>Toh et al.[105]</td>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>Hakeam et al.[37]</td>
<td>61</td>
<td>1</td>
<td>9.8</td>
</tr>
</tbody>
</table>

NR: Not Reported
num and jejunum), intolerance to zinc-rich sources (red meat, fish), reduced gastric acid production (required for zinc absorption and bioavailability) and bacterial overgrowth (due to alterations of the intestinal tract) [54-57]. In addition to these, zinc levels decline by about 30% during pregnancy. Low levels of zinc have been associated with premature deliveries, low birth weight, abnormal fetal development and neurological defects such as spina bifida. Cases of zinc deficiency during lactation are accompanied by skin rashes or dermatitis, often in combination with failure to thrive and irritability [58-60]. Zinc deficiency is not invariably reported after bariatric surgery (Table 5). Reportedly, it was calculated approximately 5%, one year after BS [17]. Hair loss, as a sign of zinc deficiency, was observed in 30% of the 43 individuals who underwent BS, one year postoperatively [43]. Moreover, Moize et al, found that 5 years after BS, zinc deficiency was 12.5% in 61 patients, while 4 years postoperatively, in the same study, zinc deficiency was 47.6% [44]. Furthermore, Gehrer et al, reported that zinc was below the normal ranges in 34% of the fifty patients who underwent BS, after a 3-year follow-up period [27] and Salle et al, found in their study that zinc deficiency was 18.8% one year after BS [61]. In addition, one study found that zinc deficiency was 14% two years after BS [23], which was in agreement with another study which reported 14.3% zinc deficiency five years after the operation [19].

MAGNESIUM: Since magnesium is an essential trace element for optimal metabolic function, magnesium deficiency may be a risk factor not only for neurological and cardiovascular complaints but also for metabolic syndrome [62-65]. Furthermore adequate intake of the mineral is needed for normal embryonic and fetal development [66]. Magnesium deficiency is not reported as commonly as other nutritional deficiencies and accordingly there are only sparse data about postoperative hypomagnesemia (Table 6). One study, found that magnesium deficiency was present in 3% of 200 subjects having undergone BS (versus 2% preoperatively) one year after the procedure [17]. Furthermore, there are two different studies which agree that magnesium deficiency did not occur after BS [19,22], whereas Moize et al, reported that hypomagnesemia was observed in 12.5% of 61 patients, five years after BS [44]. Finally, Coupaye et al, reported that cramps were observed in 3% of 43 individuals who underwent BS [43]. Although COPPER: Copper as a nutrient is essential in many enzymatic reactions and is involved in red cell production and function of the nervous system [76,77]. It is absorbed in the stomach and the proximal duodenum [78,79]. Patients undergoing malabsorptive bariatric sur-

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Number of patients</th>
<th>Years of follow-up</th>
<th>Prevalence of Vitamin D deficiency postoperatively (%)</th>
<th>Prevalence of calcium deficiency postoperatively (%)</th>
<th>Prevalence of hyperparathyroidism (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Coupaye et al.[43]</td>
<td>43</td>
<td>1</td>
<td>70</td>
<td>0</td>
<td>NR</td>
</tr>
<tr>
<td>2014</td>
<td>Van Rutte et al.[17]</td>
<td>200</td>
<td>1</td>
<td>36</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>2013</td>
<td>Alexandrou et al. [16]</td>
<td>40</td>
<td>4</td>
<td>56.3</td>
<td>NR</td>
<td>43.3</td>
</tr>
<tr>
<td>2012</td>
<td>Saif et al.[19]</td>
<td>82</td>
<td>1/3/5</td>
<td>34.3 / 55.6 / 42</td>
<td>0 / 0 / 0</td>
<td>23.2 / 7.7 / 58.3</td>
</tr>
<tr>
<td>2012</td>
<td>Moizė et al.[44]</td>
<td>61</td>
<td>4 / 5</td>
<td>44.4 / 0</td>
<td>4.8 / 12.5</td>
<td>57.1 / 87.5</td>
</tr>
<tr>
<td>2012</td>
<td>Damms-Machado et al.[18]</td>
<td>54</td>
<td>1</td>
<td>70.4</td>
<td>0</td>
<td>NR</td>
</tr>
<tr>
<td>2011</td>
<td>Ruiz-Tovar et al. [106]</td>
<td>30</td>
<td>2</td>
<td>3.3</td>
<td>NR</td>
<td>3.3</td>
</tr>
<tr>
<td>2010</td>
<td>Aarts et al.[104]</td>
<td>60</td>
<td>1</td>
<td>39</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>2010</td>
<td>Gehrer et al.[27]</td>
<td>50</td>
<td>3</td>
<td>32</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

NR: Not Reported
Table-5 Prevalence of zinc deficiency after bariatric surgery.

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Number of patients</th>
<th>Years of follow-up</th>
<th>Prevalence of zinc deficiency postoperatively (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Van Rutte et al.[17]</td>
<td>200</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2012</td>
<td>Saif et al.[19]</td>
<td>82</td>
<td>5</td>
<td>14.3</td>
</tr>
<tr>
<td>2012</td>
<td>Moizã et al.[44]</td>
<td>61</td>
<td>4 / 5</td>
<td>47.6 / 12.5</td>
</tr>
<tr>
<td>2012</td>
<td>Pech et al.[23]</td>
<td>100</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>2010</td>
<td>Salle et al.[107]</td>
<td>33</td>
<td>1</td>
<td>18.8</td>
</tr>
<tr>
<td>2010</td>
<td>Gehrer et al.[27]</td>
<td>50</td>
<td>3</td>
<td>34</td>
</tr>
</tbody>
</table>

Table-6 Prevalence of magnesium deficiency after bariatric surgery.

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Number of patients</th>
<th>Years of follow-up</th>
<th>Prevalence of magnesium deficiency postoperatively (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Van Rutte et al.[17]</td>
<td>200</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2013</td>
<td>Eltweri et al.[22]</td>
<td>41</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>Saif et al.[19]</td>
<td>82</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2012</td>
<td>Moizã et al.[44]</td>
<td>61</td>
<td>5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

NR: Not Reported

It is not common, maternal magnesium deficiency has been associated with premature labor, small-for-gestational-age (SGA) neonates, pre-eclampsia and the pathogenesis of the sudden infant death syndrome (SIDS). Tayaka et al., showed a significant lower level of Mg concentrations in umbilical cord blood in SGA neonates compared to that of control group [66-68]. Nevertheless, further studies should investigate the impact of Mg deficit in fetuses.

SELENIUM: Selenium is a trace element with an essential role in human biology [69]. It is necessary for normal growth and reproduction. Selenium deficiency is implicated with maternal and fetal adverse outcomes, such as infertility, miscarriages, pre-eclampsia, pre-term labor, small for gestational age newborns, gestational diabetes and nervous damage of the fetus [70,71]. In addition, Skroder et al, found a possible negative impact in psychomotor and language development of children from mothers with reduced levels of selenium during pregnancy [72]. Searching in the literature, only few data were found referring to selenium deficiency after bariatric surgery [73-75]. Studies have shown a decrease at the level of selenium after RYGBP. One study also reported that 9 out of 21 patients (43%) suffered from selenium deficiency after VSG [22] . Moreover, Pech et al, found that in 100 individuals who underwent VSG, a significant decrease in serum selenium levels occurred three months after the procedure and 8 out of 82 (9.7%) patients suffered from selenium deficiency and were therefore given supplementation[22]
surgery are at risk of impaired copper status due to hypoa-
cidity in the remnant stomach pouch and bypass of the
duodenum\(^\text{[80]}\). Deficiency seems to be rare after BS. The
only data we found refers to Amar’s et. al. study in
which they found that there was no deficiency in 41 pa-
tients after VSG \(^\text{[22]}\). Although it is uncommon, cli-
nicians should be vigilant in its early detection as iron and
copper deficiency often coexist, especially in pregnancy.
As a result, hypocupremia is often misdiagnosed until
serious neurological symptoms, anemia and heart en-
largement occurs \(^\text{[81]}\).

CHROMIUM AND VANADIUM: There are no reports
referring to chromium or vanadium deficiency in preg-
nant women after bariatric surgery.

VITAMIN A: Vitamin A is included in the fat-soluble
vitamins and its absorption occurs in the small intestine
either as retinol (animal sources) or as caroten (plants
and vegetables). Vitamin A plays an important role in
cells’ reproduction, differentiation and proliferation and
its’ requirements during pregnancy and lactation are
higher by 20% \(^\text{[82]}\). Adequate levels of vitamin A are
necesssary, especially in the second and third pregnancy
 trimester, for normal fetal lung development and matu-
ration, vision and immunity \(^\text{[77,83]}\). Also Vitamin A defi-
ciency has been shown to increase the risk of maternal
mortality, premature birth, intra-uterine growth retarda-
tion, low birth weight and ante-partum hemorrhage due
to abruption placentae \(^\text{[84-86]}\). Finally vitamin A defi-
ciency may exacerbate iron deficiency, which is relatively
common during pregnancy \(^\text{[82]}\).

After a bariatric procedure Vitamin A deficiency can
arise due to the bypassing of intestinal segments, re-
duced dietary intake, oxidative stress, lipid malabsorption
and excessive vomiting, which can be even more pro-
found during pregnancy \(^\text{[87]}\). Two different studies re-
ported that Vitamin A deficiency was present in 20% of
43 patients, and in 4% of 60 patients respectively one
year after BS \(^\text{[25,43]}\). On the other hand, Saif et al. found that hypovitaminosis A did not occur five years
after BS . However, there are also three studies which
have reported a vitamin A excess with a prevalence be-
tween 7,9% and 55,5% . Rates of vitamin A excess and
deficiency after surgery for morbid obesity are presented
in Table 7.

VITAMIN K: Vitamin K is another fat-soluble vita-
mnin which is absorbed primarily in the ileum. It is nota-
ble that vitamin K has an already limited placental trans-
fer during pregnancy, but its deficiency is rare. The ex-
cessive vomiting or fat malabsorption affecting pregnant
women, particularly after bariatric surgery, may lead to
a higher risk of vitamin K deficiency and concomitant
disorders such as clotting abnormalities and an in-
creased bleeding tendency \(^\text{[88]}\). Eerdekens et. al. have
reported on 5 cases with severe neonatal intracranial
bleeding, complicating births from women who had un-
dergone BS, all possibly related to Vitamin K deficiency
\(^\text{[89]}\).

VITAMIN E: Vitamin E, being also a fat-soluble vita-
mnin, is mainly absorbed in the small intestine, especially
in the terminal ileum. Since the intestinal segment which
is bypassed in malabsptive procedures such as RYGBP
is jejunum and not the distal ileum, vitamin E deficiency
seems to be uncommon after bariatric surgery. One
study reported that hypovitaminosis E was found in 3%
of 43 patients who underwent BS one year after the pro-
cedure \(^\text{[43]}\). Furthermore, on the same wavelength, an-

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Number of patients</th>
<th>Years of follow-up</th>
<th>Prevalence of Vitamin A deficiency postoperatively (%)</th>
<th>Prevalence of vitamin A excess postoperatively (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Coupaye et al.(^\text{[43]})</td>
<td>43</td>
<td>1</td>
<td>20</td>
<td>NR</td>
</tr>
<tr>
<td>2014</td>
<td>Van Rutte et al.(^\text{[17]})</td>
<td>200</td>
<td>1</td>
<td>NR</td>
<td>55.5</td>
</tr>
<tr>
<td>2012</td>
<td>Saif et al.(^\text{[19]})</td>
<td>82</td>
<td>5</td>
<td>0</td>
<td>NR</td>
</tr>
<tr>
<td>2012</td>
<td>Damms-Machado et al. (^\text{[18]})</td>
<td>54</td>
<td>1</td>
<td>NR</td>
<td>7.9</td>
</tr>
<tr>
<td>2010</td>
<td>Aarts et al.(^\text{[104]})</td>
<td>60</td>
<td>1</td>
<td>4</td>
<td>48</td>
</tr>
</tbody>
</table>

NR: Not Reported

Table 7 Prevalence of vitamin A deficiency or excess after bariatric surgery.
other study reported that there were not any patients who were deficient regarding vitamin E one year after BS [18]. Although uncommon, women in pregnancy should be monitored, because low concentration of Vitamin E has been associated with abruptio placentae in normal pregnancies and higher incidence of miscarriages [82].

VITAMIN B1 (THIAMINE): Water-soluble vitamin B1 is absorbed in the proximal small intestine (mainly in the ileum) and its deficiency may occur due to persistent vomiting, from which pregnant women commonly suffer, reduced intake and malabsorption. Thiamine deficiency has been associated with encephalopathies, namely Wernicke’s encephalopathy and Korsakoff’s syndrome, dry Beri-Beri, ataxia and mental status changes [90,91]. Although Vitamin B1 deficiency seems to be relatively rare, it may lead to serious health problems. Rates of vitamin B1 deficiency and excess after surgery for morbid obesity are presented in Table 8. Gehrer et al. reported in their study that there was no thiamine deficient patient three years after VSG, and Moize et al. concluded the same after a five-year follow-up period [27,44]. Nevertheless, in a small sample of 13 individuals, vitamin B1 deficiency was about 30,8% five years after VSG and in three other studies the prevalence of this deficiency fluctuated between 9% and 23% one year after the procedure. It should be highlighted that none of these four studies, which reported a higher prevalence of thiamine deficiency, noticed any clinical comorbidities relevant to the reported deficiency [17,19,25,43]. On the other hand, there were two studies which found a thiamine excess after BS. The prevalence of this excess was 4,5% and 31% respectively [17,25].

VITAMIN B6 (PYRIDOXINE): Vitamin B6 concentrations decline during pregnancy as a physiologic adjustment secondary to increased blood volume or as a result of increased requirements for active transport across the placenta [82]. Vitamin B6 deficiency is rare but it has been associated with pre-eclampsia, carbohydrate intolerance, hyperemesis gravidarum and neurologic disease of the infants [92]. As a water-soluble vitamin, B6 is absorbed primarily in the duodenum after exposure to the gastric acid [11,30]. Pregnant women with a history of bariatric surgery are in danger due to the bypassing of the responsible for the absorption intestinal segments and the reduction of the gastric acidity, conditions that ensue both after RYGBP and VSG. Rates of postoperative vitamin B6 deficiency and excess are presented in Table 9. Three different studies conducted with a one-year follow-up, reported that the prevalence of vitamin B6 deficiency was 4%, 17% and 17,2% respectively after BS, while on the other hand an excess of pyridoxine with a prevalence between 9,2% and 47,5% has also been reported [17,18,43]. Moreover, Aarts et al. found also that 30% of sixty individuals who underwent BS had a vitamin B6 excess, while none of them was deficient [25]. Finally, Moize et al. and Gehrer et al. both reported that the prevalence of vitamin B6 deficiency was 0%, five and 3 years respectively after BS [27,44].

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Number of patients</th>
<th>Years of follow-up</th>
<th>Prevalence of Vitamin B1 deficiency postoperatively (%)</th>
<th>Prevalence of Vitamin B1 excess postoperatively (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Coupaye et al.</td>
<td>43</td>
<td>1</td>
<td>23</td>
<td>NR</td>
</tr>
<tr>
<td>2014</td>
<td>Van Rutte et al.</td>
<td>200</td>
<td>1</td>
<td>9</td>
<td>4.5</td>
</tr>
<tr>
<td>2012</td>
<td>Moizé et al.</td>
<td>61</td>
<td>5</td>
<td>0</td>
<td>NR</td>
</tr>
<tr>
<td>2012</td>
<td>Saif et al.</td>
<td>82</td>
<td>5</td>
<td>30.8</td>
<td>NR</td>
</tr>
<tr>
<td>2010</td>
<td>Aarts et al.</td>
<td>60</td>
<td>1</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>2010</td>
<td>Gehrer et al.</td>
<td>50</td>
<td>3</td>
<td>0</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR: Not Reported
VITAMIN B2 (RIBOFLAVIN), VITAMIN B3 (NIacin), VITAMIN B5 (PANTOTHENIC ACID), VITAMIN B7 (BIOTIN): Riboflavin deficiency during pregnancy can result in pre-eclampsia and birth defects including congenital heart defect and limb deformities [93]. Deficiency of niacin is also a concern during pregnancy but it is relatively common. Finally research data suggest that a substantial number of women develop marginal or subclinical biotin deficiency during normal pregnancy with a potential risk for teratogenesis [94].

For pregnant women who have undergone bariatric surgery the risk of those deficiencies is greater due to malabsorption but there are no specific data referring to these water-soluble vitamins either after RYGBP or after VSG.

VITAMIN C (ASCORBIC ACID): Vitamin C is an essential water-soluble vitamin, involved in many biological mechanisms. During pregnancy, serum levels of vitamin C progressively decrease almost by 50%, because of the extra uptake by the fetus and the hemodilution. It’s deficiency except from fatigue, bleeding gums, petechia, crocscrew hair, hyperkeratosis, myalgias/arthritis is also associated with pre-eclampsia, poor fetal growth and premature birth [95,96]. This deficiency seems more likely after bariatric surgery, although few data are available in the published literature referring to it. Moreover, during lactation, vitamin C requirements are even higher, and since the maternal vitamin C levels are associated with the levels of vitamin C in the milk, monitoring should be close [82].

TOTAL PROTEIN, PREALBUMIN, ALBUMIN: The evaluation of protein status includes the assessment of the following parameters: 1) total protein, 2) prealbumin and 3) albumin. The majority of the proteins are absorbed in the duodenum. Protein deficiency after BS may occur due to the ensuing anorexia, lower protein uptake, reduced protein digestion caused by poor HCl secretion, and malabsorption. It is associated with loss of muscle, oedema and hypoalbuminaemia. Prealbumin is considered to be an indicative parameter of adequacy of protein intake [97]. Several studies have been conducted in order to assess either all of these parameters or only some of them (Table 10). Coupaye et al. found that one year after VSG, albumin and prealbumin deficiency were both rare (3%), in a sample of 43 subjects [43].Moize et al. reported in their study that after a five-year follow-up, no one of the 61 patients who had undergone VSG, was deficient, concerning albumin and prealbumin status [44]. On the same wavelength, five more studies, agreed that the prevalence of albumin deficiency after VSG was 0% [18,22,26,38,98]. Furthermore, Saif et al. found that in 18 patients, who had undergone VSG and were assessed for five years, only one (5,5%) had an albumin deficiency [19], and Gehrer et al. reported that 4% of the fifty individuals were deficient with regards to total protein, three years post-operatively [27]. Finally, on the contrary, Aarts et al. reported a prevalence of albumin deficiency of about 15% one year after BS, which was relatively higher, compared to the above mentioned studies [25].

POST-OPERATIVE MANAGEMENT OF NUTRITIONAL DEFICIENCIES IN PREGNANCY.

The above mentioned research data have shown that obese women in reproductive age suffer quite often from several nutritional deficiencies, even prior to bariatric surgery, and there is a high risk of aggravation of these deficiencies after either RYGBP or VSG for various reasons. Pregnancy can further amplify some of these nutritional deficiencies either by increasing the demand or by decreasing the intake [99]. Therefore, life-long supplementation of vitamins and trace elements is highly recommended after bariatric procedures [10,100-102]. For pregnant women the importance of routine nutritional screening is heightened. They should be closely monitored and clinicians should be vigilant for the detection of any deficiency that may occur, in order to prevent adverse outcomes, maternal or fetal. Table 11 lists the nutrient supplements which are recommended for patients after BS, for women in normal pregnancies and during pregnancy after BS. These suggested supplementations should be regarded as general recommendations, since individual requirements may vary depending on the results of frequent testing that may detect a state of deficiency or deficiency symptoms.

Further testing should be conducted for the evaluation of more nutrient markers, namely magnesium, PTH, copper and other water-soluble vitamins [10,103]. Overall, in the management of obesity, teamwork has proved to be beneficial, and a comprehensive group of well-trained professionals is vital for the efficient and effective nutritional care of the patient.
Table 9: Prevalence of Vitamin B6 deficiency or excess after bariatric surgery

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Number of patients</th>
<th>Years of follow-up</th>
<th>Prevalence of Vitamin B6 deficiency postoperatively (%)</th>
<th>Prevalence of Vitamin B6 excess postoperatively (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Coupaye et al.[43]</td>
<td>43</td>
<td>1</td>
<td>17</td>
<td>NR</td>
</tr>
<tr>
<td>2014</td>
<td>Van Rutte et al.[17]</td>
<td>200</td>
<td>1</td>
<td>4</td>
<td>47.5</td>
</tr>
<tr>
<td>2012</td>
<td>Damms-Machado et al. [18]</td>
<td>54</td>
<td>1</td>
<td>17.2</td>
<td>9.2</td>
</tr>
<tr>
<td>2012</td>
<td>Moizê et al.[44]</td>
<td>61</td>
<td>5</td>
<td>0</td>
<td>NR</td>
</tr>
<tr>
<td>2010</td>
<td>Aarts et al.[104]</td>
<td>60</td>
<td>1</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>2010</td>
<td>Gehrer et al.[27]</td>
<td>50</td>
<td>3</td>
<td>0</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR: Not Reported

Table 10: Prevalence of albumin, prealbumin or total protein deficiency after bariatric surgery.

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Number of patients</th>
<th>Years of follow-up</th>
<th>Prevalence of albumin deficiency postoperatively (%)</th>
<th>Prevalence of prealbumin deficiency postoperatively (%)</th>
<th>Prevalence of total protein deficiency postoperatively (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Coupaye et al.[43]</td>
<td>43</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>NR</td>
</tr>
<tr>
<td>2013</td>
<td>Eltweri et al.[22]</td>
<td>41</td>
<td>NR</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>2012</td>
<td>Saif et al.[19]</td>
<td>82</td>
<td>1 / 3 / 5</td>
<td>5.5</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>2012</td>
<td>Moizê et al.[44]</td>
<td>61</td>
<td>4 / 5</td>
<td>0</td>
<td>0</td>
<td>NR</td>
</tr>
<tr>
<td>2012</td>
<td>Damms-Machado et al.[18]</td>
<td>54</td>
<td>1</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>2011</td>
<td>Ruiz-Tovar et al. [106]</td>
<td>30</td>
<td>2</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>2010</td>
<td>Aarts et al.[104]</td>
<td>60</td>
<td>1</td>
<td>15</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>2010</td>
<td>Gehrer et al.[27]</td>
<td>50</td>
<td>3</td>
<td>0</td>
<td>NR</td>
<td>4</td>
</tr>
<tr>
<td>2009</td>
<td>Toh et al.[105]</td>
<td>64</td>
<td>1</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>2006</td>
<td>Hamoui et al.[108]</td>
<td>118</td>
<td>1</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR: Not Reported
Micronutrient	Recommendation for general bariatric population	Recommendation for pregnant women	Recommendation for pregnant women with a history of bariatric surgery
Iron | 65 mg | 30 mg | 40-65 mg
Vitamin B12 | 5 mg | 3 mg | 4-5 mg
Folate | - | 4 mg | 4 mg
Calcium | 1200-2000mg oral | - | 2000mg calcium citrate
Vitamin D | 800-1000iu | - | 2000-6000iu
Zinc | 8-15mg | - | 15mg
Magnesium | - | - | 2000-1000mg (if states of deficiency or symptoms occur)
Vitamin K | 300mg | - | Close follow up
Copper | 2-8mg | - | 2-8mg
Vitamin A | 10.000 iu | - | 5.000 iu
Vitamin C | 500mg | - | 500-1000mg

Micronutrient recommendation for general bariatric population, for pregnant women and for pregnant women with a history of bariatric surgery

Bariatric surgery is associated with several nutritional deficiencies. As a result, it is recommended that a thorough, customized nutrition assessment should be conducted for every woman of reproductive age, potential candidate for bariatric surgery, preoperatively, in regular post-operative intervals, and even more intensively during pregnancy. The most common deficiencies include iron, folate, vitamin B12, vitamin D and calcium deficiency. Most women should be supplemented even before conception and especially during pregnancy. Furthermore, many other nutrients, including vitamins of the B-complex (thiamine, pyridoxal), other fat-soluble vitamins (A, E, K) and minerals (copper, zinc, selenium), although rarely deficient, should be tested periodically, to ensure their levels remain within normal range.

DISCLOSURES

The authors have no interest to disclose.

REFERENCES

1. (GHO) WGHO:
40. Keller JS, T.: The role of the gastrointestinal tract in calcium homeostasis and bone remodelling. Osteoporosis international: a journal established as a result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2013;24:2737-2748.
42. Blum Mea: Vitamin D(3) in fat tissue. Endocrine 2008;33:90-94.
64. Young G: Leg cramps. Clinical evidence 2009 2009
84. Grune Tea: Beta-caritene is an important vitamin A source for humans. The journal of nutrition 2010;140:2268S-2285S.