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Abstract  
Background: To quantify the underlying rhythmic patterns observed in surface electromyography (SEMG) in 
patients with Parkinson’s Disease (PD), to compare rhythmicity of PD gait with normal gait, and to compare 
overground walking to treadmill gait. 

Methods: Eight individuals with idiopathic PD, and ten individuals with no history of neurological disorders 
participated. SEMG was recorded from the vastus lateralis, tibialis anterior, lateral gastrocnemius and biceps 
femoris muscles bilaterally. Each participant performed two trials of overground walking and two trials of 
treadmill walking at a self-selected comfortable walking speed. SEMG was analyzed using a non-linear statistical 
model that identified underlying recurrent locomotor patterns, which estimated the relative contribution of 
central pattern generators to the observed muscle activation signals. An index of rhythmicity was determined 
from the statistic, R2. 

Results: The rhythmicity of PD gait was significantly higher than that of normal gait (p = .0458). There was 
also a significant difference between the rhythmicity of overground walking and treadmill walking (p = .0097). 

Conclusions: Individuals with PD appear to walk with muscle activation patterns that are more rhythmic than 

normal. This suggests that there is more stride-to-stride consistency, and there are fewer postural adjustments 

and responses to perturbations. We also found that treadmill gait was more rhythmic than overground walking. 

These findings, although preliminary, challenge the paradigm and current approach to gait retraining of patients 

with PD.  
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Introduction 

 Parkinson’s Disease (PD) is a complex 

neurodegenerative disorder that affects approximately 

0.3% of the population worldwide[1]. Clinical 

management of PD currently focuses on pharmacological 

treatment and surgically implanted devices[2]. While 

these approaches effectively treat some motor 

symptoms, they are less successful at treating postural 

instability and gait disturbances, especially as the 

disease advances [3], [4]. There is a growing interest in 

developing physical activity-based treatments such as tai 

chi and tango dancing that are designed to retrain 

balance and locomotion through repetitive movement

[5]. However, there is limited evidence that these 

approaches are effective[6]. The focus of many physical 

therapy interventions is to promote rhythmic movement 

through cadenced repetition. We propose that cadenced 

repetition may contradict the pathophysiology of PD, 

which has been characterized as having greater-than-

normal rhythmicity[7]. Normal gait involves a certain 

amount of variability, which is believed to optimize 

dynamic stability [8]. So, we set out to describe the 

rhythmic characteristic of muscle activation signals in PD 

compared to a normative sample to provide deeper 

insight into the neuromuscular behaviour of PD gait 

disturbances. 

Surface electromyography (SEMG) signals can 

provide a non-invasive representation of neural 

behaviour downstream from the central nervous system. 

Previous SEMG studies have identified abnormal motor 

control features of PD that have helped inform our 

understanding of the disease[9]–[11]. Ferrarin et al. 

(2007) identified the following abnormalities in EMG 

activity during PD gait[12]. There is prolonged activation 

of Rectus Femoris (RF) and Semimembranosus (SM) 

muscles throughout the gait cycle. Recruitment of the 

RF at heel contact and the SM in late swing are reduced. 

There is also reduced recruitment of the Gastrocnemius 

Medialis (GM) at push-off, and reduced recruitment of 

the Tibialis Anterior (TA) at heel contact. Some of these 

effects can be partially ameliorated with levodopa[13]. 

Premature activation of the TA and GM is seen prior to 

freezing of gait[14]. Miller et al. (1996) reported that 

variability in the gastrocnemius muscle was greater than 

normal in PD gait[15]. Taken together, these findings 

present a detailed but obscure picture of the 

pathological control of gait in PD. 

There are a number of characteristic gait 

disturbances associated with PD, such as reduced arm 

swing, slow walking speed, short step length, and 

difficulty turning[6], [16]. PD gait is also characterized 

increased variability of walking speed, step length, step 

width, and stride duration[17], [18]. Fractal analyses 

have shown that the kinematics of PD gait are less 

ordered, and more complex and random-like compared 

to normal gait[16], [19]. All of these gait features 

negatively impact mobility and balance. They also 

contribute to postural instability and risk of falling, which 

can lead to further injury, disability and death[4]. In PD, 

the relative contribution to gait of supraspinal centres is 

altered[20]. It is not clear how or to what extent the gait 

disturbances are caused by impaired supraspinal input. 

The present study is one of the first attempts to analyze 

and interpret multiple muscle SEMG during PD gait. 

The aim of this study was to describe rhythmic 

patterns of peripheral muscle activation in PD and 

identify differences from normative behaviour. The 

foundation of our analysis is the idea that spinal 

locomotor control consists of a set of modular burst 

generators[21], [22]. The idea that human gait is 

controlled by an efficient, minimal set of movement 

primitives, or muscle synergies, located in the spinal 

cord has been advanced for many years [23], [24]. 

Muscle synergy analysis can be used by clinicians to 

draw inferences about neural structures underlying 

motor behaviours and guide rehabilitation decisions 

[25]. There is some opposition, however, to the muscle 

synergy hypothesis in the scientific literature [26]. 
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Physiological interpretations based on the idea that 

reducible patterns in peripheral muscle activity reflect 

simplicity within the central nervous system should be 

made with caution. 

 

Methods 

Participants 

Eight (n=8) individuals with idiopathic, mild to 

moderate PD (Hoehn-Yahr scale 1 to 3)[27], and a 

convenience sample of ten (n=10) individuals with no 

history of neurological disorders (Able-bodied group) 

participated in this study. PD participants were recruited 

from an outpatient clinic of the Movement Disorders and 

Neurorehabilitation Center at the Methodist Neurological 

Institute in Houston, TX. All PD participants used 

Levodopa and performed all tasks while in the “ON” 

state. The study procedures were approved by the 

University of Houston’s Committee for Protection of 

Human Subjects, and all participants provided informed 

written consent. Descriptive statistics of the participants 

are provided in Table 1. 

 

 

Experimental Protocol 

Each participant performed two walking trials 

over ground (OG), followed by two walking trials on a 

treadmill (TM). Between each trial, participants sat and 

rested for 5 minutes. The OG trials consisted of the 

participants walking along a straight 10m track on a 

hardwood floor in a large, open gymnasium. They 

started walking 2m before the track and continued 

walking for at least 2m after the track, such that the trial 

did not include step initiation or stopping. Participants 

were instructed to “walk as though you are going to mail 

a letter.” Their self-selected walking speed was 

calculated as 20m divided by the time it took to 

complete both OG trials (i.e., average speed of both 

trials). During the TM trials, the treadmill speed was set 

to the participant’s self-selected walking speed. Each TM 

trail was 60s in duration at a constant speed. An equal 

number of gait cycles were analysed under both 

conditions for each subject. 

 

Instrumentation 

Participants’ lower extremities were instrument-

ed with an 8-channel SEMG system (DataLOG MWX8, 

Biometrics Ltd, Ladysmith, VA, USA). Dry reusable 

surface electrodes (10mm diameter discs with 20mm 

between centres) were carefully placed over the muscle 

belly of the following muscles bilaterally: vastus lateralis 

(VL), long head of biceps femoris (BF), tibialis anterior 

(TA) and gastrocnemius lateralis (LG). The SENIAM 

recommendations for sensor location was used[28]. 

These particular muscles were selected as a representa-

tive set of the major actuators during gait[29]. The skin 

was cleaned and lightly abraded before the electrodes 

were attached with double-sided adhesive tape. SEMG 

signals were detected via differential electrodes, pre-

amplified (1000 gain), filtered (bandpass: 20 – 450 Hz), 

and A/D converted at a sampling rate of 2000 Hz. The 

beginning and end of each gait cycle was determined by 

initial contact of the right foot, which was detected by 

the activation of a foot switch placed on the sole of the 

right shoe directly under the heel. 

 

Data Analysis 

After recording, SEMG signals were rectified and 

filtered using a zero-lag, low-pass Butterworth filter with 

a cut-off frequency of 10Hz, which is considered 

sufficient for noise removal without loss of signal[30]. 

Signals were then coded by fuzzy sets according to a 

Group N Age (years) Sex H&Y* 

PD 8 71±12 6M/2F 2.2±0.7 

AB 10 29±10 6M/4F – 

Table 1. Summary statistics of participants  

* Hoehn & Yahr scale19 
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classification procedure previously published[31]. Figure 

1 illustrates the procedure. This method is designed to 

represent multiple muscle activation signals as a 

recurrent sequence of four basic burst patterns in the 

manner of a spinal locomotor circuit[21]. Four was 

shown to be the optimal number of bursts[31]. 

Pearson’s correlation coefficient, R, was determined 

using the empirical SEMG data versus the model 

estimation across all channels and gait cycles. The 

relative amount of SEMG signal that fits this model can 

be quantified using the statistic, R2, which is a measure 

of goodness of fit between the empirical data (Figure 

2B) and the model-fitted signals (Figure 2D). R2 

incorporated every individual gait cycle, and was 

calculated for each individual trial. We interpreted R2 as 

an index of rhythmicity, because it represents the 

proportion of the muscle activation signals that recur 

with observed regularity. Any stride-to-stride variability 

in muscle activation would not be represented by the 

model and would therefore decrease the index of 

rhythmicity. 

A two-way analysis of variance (ANOVA) was 

performed with R2 as the dependent variable. We tested 

for main effects of one between-subject factor (PD 

versus Able-bodied), and one within-subject factor (OG 

versus TM). We also tested for an interaction effect of 

these two factors. Difference in self-selected walking 

speed between groups was tested using Student’s t-Test 

for independent means. A level of significance of p < 

0.05 was used. All data processing and statistical 

analyses were performed using custom-written software 

in the MATLAB programming language (The Mathworks, 

Inc., Natick, MA, USA). 

 

Results  

All participants successfully completed the 

protocol without difficulty. SEMG signal quality was good 

in all cases. The classification procedure yielded values 

of R2 from 0.582 to 0.866. The means and standard 

deviations for the different groups and walking 

conditions are illustrated in Figure 2. There was a 

significant group effect on the index of rhythmicity, R2 (p 

= .0458). The mean (± standard deviation) index of 

rhythmicity was 0.7754 ± 0.0574 for the PD patients, 

and 0.7138 ± 0.0683 for the able-bodied subjects. There 

was also a significant difference between OG walking 

and TM walking (p = .0097). The mean (± standard 

deviation) index of rhythmicity for both groups of 

participants was 0.7264 ± 0.0625 for OG walking, and 

0.7559 ± 0.0757 for TM walking. There was no 

significant interaction between factors (p = .3671). 

There was a significant difference between PD 

and the able-bodied group in terms of self-selected 

walking speed (p = .0024). The mean (± standard 

deviation) walking speed was 1.29 ± 0.18 m/s for the 

able-bodied subjects, and 0.87 ± 0.31 for the PD 

patients. 

 

Discussion  

Healthy, mature motor skills are governed by 

neurological processes that allow for an optimal amount 

of movement variability[32]. Systems that produce more 

than optimal variability are noisy and unstable, while 

systems that produce less than optimal variability tend 

to be rigid and unfit to cope with perturbations. 

Pathological conditions can result in either case.  

The main finding of this study is that the 

rhythmicity of muscle activation signals in the lower 

extremities of elderly individuals with PD is higher than 

in young, able-bodied individuals. In other words, the 

muscle activation patterns in PD exhibit greater 

regularity and are more consistent with the four-burst 

model of spinal locomotor control. It also means that 

there was less stride-to-stride variability in terms of 

SEMG in PD patients than in able-bodied individuals. In 

normal gait, the majority of the SEMG signals (70% OG, 

72% TM) were explained by the four-burst CPG model. 
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Figure 1. Classification procedure 

Processed SEMG signals (A) were separated into time-normalized gait cycles (B), and coded as four synergistic 

patterns of muscle activity during the gait cycle (C). Signals were reconstructed (D), and the amount of 

information retained was evaluated by the statistic, R2. 

Figure 2. R2 for both groups, both walking conditions 

Index of rhythmicity of muscle activation patterns for both groups and both 
conditions. Mean values for each group shown. Error bars represent standard 
deviations. Significant differences between groups and between walking conditions 
were observed  
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The parts of the signal that were not explained by the 

model would be made up of non-rhythmic elements such 

as, anticipatory postural adjustments, feedback response 

to irregular perturbations, and aberrant neurological 

commands (i.e., noise). In PD gait, a significantly 

greater portion of the SEMG signals is represented by 

the CPG model (76% OG, 80% TM). This is a rather 

unexpected result. We presumed that PD gait would 

involve more aberrant neurological commands than 

normal, based on reports that there is higher variability 

in PD gait [15], [16], [33]. However, the overall amount 

of non-rhythmic elements in SEMG was reduced in PD 

gait, suggesting that there are fewer stride-to-stride 

adjustments and responses to errors. 

The idea that human locomotion is driven by 

oscillating neural circuits located in the spinal cord has 

been advanced for decades[34]. These circuits, known 

as the Central Pattern Generator (CPG), provide 

rhythmic bursts of muscle activation signals that form 

the basis of locomotor control[35]–[37]. Rhythmic 

patterns can be identified using a statistical model of 

CPG[31]. By this approach, we are able to estimate the 

relative contribution of the CPG to muscle activation 

signals. Furthermore, we can estimate how much of the 

variability in gait is due to sources other than the spinal 

CPG circuits (e.g., feedforward adjustments from 

supraspinal centers).  

If confirmed by a larger study, these findings 

may lead to significant changes in current clinical 

approaches to gait retraining of patients with PD. The 

traditional physical therapy approach of retraining 

locomotion through rhythmic activities such as treadmill 

training, tandem bicycling, and OG walking may be 

inconsistent with the fact that rhythmic muscle 

activation patterns are already more pronounced in PD

[5], [6]. These findings may support the development of 

new research protocols for assessing the role of 

conventional therapies, such as dopamine replacement 

therapy and DBS, on neurological control of gait. 

One of our secondary findings was that there is 

a significant difference between OG walking and TM 

walking in both groups. Muscle activation signals during 

TM were more rhythmic than during OG walking. This 

result was expected. TM walking involves a more stable, 

controlled environment with fewer irregularities to 

perturb the body. Therefore, there is less need for 

anticipatory adjustments from the supraspinal control 

centres, and the spinal CPG output will be more 

represented in the muscle activation signals. 

The variability of PD gait has been reported 

broadly in the scientific literature. Most analyses have 

focused on the variability of kinematic features of gait, 

i.e., stride length, stride interval, gait speed, etc.[17], 

[18]. These studies have all concluded that the 

variability of movement in PD gait is greater than in 

normal gait. However, none of them address the cause 

of the movement variability. Our findings suggest that 

there is reduced variability in the control signals that are 

sent to the skeletal muscles. This does not contradict 

the previous observations of increased movement 

variability. 

It should be noted that comparisons between 

the PD group and the young, able-bodied controls could 

be confounded by age. It is not possible to determine 

from our data whether between groups differences are 

due to age, disease or something else. The Able-bodied 

data is provided as a reference of normative behavior. 

The present study is one of the few analyses 

that deal with variability of multiple muscle activation 

signals using SEMG. Some studies have focused on 

individual SEMG signals. Previously, it was reported that 

the variability of SEMG in the GM muscle is greater in PD 

than in able-bodied individuals[12]. However, when we 

looked at multiple muscle SEMG signals, we found that 

they were much more representative of basic CPG 

function. There is no inconsistency between these two 

different findings. Our methods represent a broader 

paradigm which is more consistent with the complexity 
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of CNS control of gait. 

 

Conclusion 

Individuals with PD appear to walk with muscle 

activation patterns that are more rhythmic than those 

seen in young, able-bodied individuals. Specifically, their 

muscle activation patterns exhibit more stride-to-stride 

consistency and are easier to describe with a basic burst 

model of recurring muscle activation. According to the 

optimal variability concept[32], this behaviour is 

characteristic of a rigid control system, which is less able 

to cope with perturbations than a more flexible system. 

One possible explanation for this is that PD gait is more 

heavily influenced by spinal locomotor control with 

diminished control elements from supraspinal centres. 
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