
                           Vol-1 Issue 3 Pg. no.-  10 

 

©2021 Michele Polyana Rocha Mendes et.al. This is an open access article distributed under the 

terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, 

and build upon your work non-commercially. 

Michele Polyana Rocha Mendes1, Leiliane Coelho Andre1,* 

 

1Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, 

Belo Horizonte, Brazil. 

The Use of Metabolomic Tool in Assessing Environmental Exposure 

cumulative interaction between such environmental 

contaminants in the biological system. From this 

perspective, metabolomics emerges as a promising 

tool in this field of knowledge, since it is able to 

identify changes in metabolism and/or gene                   

expression resulting from exposure to environmen-

tal factors. The aim of this study was to describe           

important concepts, as well as the steps that               

permeate the metabolomics analysis, and also to 

present some relevant works with the application of 

metabolomics in the assessment of chemical                  

exposure. A literature review showed a significant 

increase in the use of metabolomics in environmen-

tal toxicology in recent years. This increase is mainly 

due to advances in analytical techniques and the 

improvement of data processing tools. However, this 

field of investigation remains little explored,                 

especially with regard to the study of toxicity                

associated with chronic exposure to low levels of 

chemical agents. Thus, it is urgent that omic                   

biomarkers can be used as a tool for                                   

decision-making, especially with a view to                      

protecting, diagnosing and recovering human health. 
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Abstract 

 The impact of the environment on the                  

development of non-communicable chronic diseases 

has gained prominence in recent years. In this                 

context, a new chemical exposure assessment                 

strategy is needed that is capable of revealing                 

multiple exposures, as well as reflecting the            
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Introduction 

 The population is constantly exposed to several 

chemicals from sources such as food and water, air 

breathing, medicines and personal care products; some of 

which do not have their toxicity fully known.   Several 

recent studies have highlighted the importance of              

associating environmental exposure to chemicals and 

development of chronic diseases acknowledged as the 

main global causes of death, such as cardiovascular and 

degenerative diseases, diabetes and cancer1. 

 Chronic diseases can result from                                 

gene-environment interaction, since they are caused by 

both epigenetic and gene expression changes, which are 

conditioned by lifestyle and acquired infections. This    

concept highlights the role of the environment, which is 

understood as a non-genetic cause of chronic diseases 2. 

The role played by environmental factors in disease    

pathogenesis has been the focal point of several studies 

seeking to demonstrate the real impact of the                   

environment on human health 3–10.  

 Interaction of environmental factors — such as 

chemical exposure, radiation, lifestyle, exercising,                        

occupation, diet and obesity — with the human organism 

changes qualitatively and quantitatively over time 4,5,11. 

As the consequence of such a variation, assessing                    

environmental impacts on health became even more      

challenging than it used to be. 

 Wild (2005) 3 proposed the concept of exposome 

— total of environmental exposures from conception to 

death — for full chronic disease pathogenesis                        

assessment. Genetic research, such as the human genome 

mapping from the 1980s-90s, contributed to develop     

genotyping methods likes PCR and microarray analysis to 

assess the disease-gene relationship. However, exposome 

analysis has become a reality through omics technologies 

such as metabolomics, which is the study of metabolites 

that carry information about chemically induced                             

molecular mechanisms in cells and tissues. This study can 

be quickly and accurately performed through                          

high-performance analytical methods like                        

chromatography and mass spectrometry 12–17. 

 Although most toxic effects of chemicals are well 

known, little is known about metabolic responses to                

environmental exposure in the general population. 

Metabolomics has been an important tool to improve 

comprehensive analysis about microbiota-xenobiotic   

interactions; it has also been an alternative to                       

epidemiological studies on the toxicity of environment 

chemicals. Exposure to such chemicals is usually mild — 

due to low chemical concentrations in the environment 

—, yet prolonged 6,18–24. The advantages of assessing the 

metabolome include analysis of genetic factors,                        

endogenous metabolites and environmental exposures 25. 

Accordingly, advances in analytical methods, data                    

processing, quality control and multivariate statistical 

and chemometric analyses have improved metabolomics’ 

accessibility to environmental-epidemiology studies 26,27.  

 The present article introduces the metabolomics 

approach and its potential as tool to help understanding 

molecular mechanisms induced by environmental toxin 

exposure. Understanding this issue can help finding                  

potential early and sensitive biomarkers to assess overall 

health risks in the population. 

Metabolomics - Perspectives For Assessing Environmental 

Exposure To Chemical Agents  

 The term metabolome, similarly to genome and 

proteome, means the set of all metabolites (lipids,                  

carbohydrates, vitamins, fatty acids, secondary                      

metabolites, signaling molecules, hormones and others) 

presenting molecular mass up to 1500 daltons in a given 

biological sample 17,25,27. Thus, it is worth noticing that 

metabolome structure is divided into segments, i.e., the 

profile of plasma metabolite differs from that of urine, 

which differs from that of saliva, and so on. Nicholson et 

al., (2012)26 claim that humans have more than 500             

different metabolites, since approximately 500 different 

cell types are known to produce several metabolites. The 

Human Metabolome Database - HMDB (2018) recorded 

approximately 114.500 identified metabolites28. This 

amount is relatively smaller than that of genes and                
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proteins, which makes metabolomics even more                       

attractiv e as scientific field 29.  

 Although metabolomics and metabonomics are 

commonly regarded as synonyms, there is a subtle               

difference between them: metabonomics is the study of 

metabolite interactions in a complex system over time; it 

was introduced by Nicholson; Lindon and Holmes (1999)

30 as the quantitative measurement taken from the                

dynamic multiparametric metabolic response of living 

systems to pathophysiological stimuli or genetic                  

modification. On the other hand, metabolomics was                

defined by Fiehn (2001)31 as the comprehensive analysis 

of all metabolites in a given biological system under              

certain conditions. The first manuscript using the word 

metabolome was published in 1998; since then, an                 

increasing number of publications on this topic have been 

reported. The Figure 1 shows the comprehensiveness of 

metabolomics studies and chemical exposure described 

by publications from the last 11 years. 

 Exposure to environmental toxins leads to 

changes in metabolism and/or gene expression (deletion 

or overexpression). Such an alteration may indicate a 

Figure 1. Number of publications located in Pubmed on metabolomics and metabolomics approach using                    

analytical platforms - LC-MS, GC-MS, NMR and CE-MS in toxicological studies in the period 2009-2020.  

Note: LC-MS: liquid chromatography mass spectrometry; GC-MS: gas chromatography–mass spectrometry, 

NMR: nuclear magnetic resonance and CE-MS: capillary electrophoresis–mass spectrometry 
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specific pattern called “metabolic signature”, which has 

the ability to signal this exposure 16. Several studies on 

metabolomics and environmental exposure to toxins 

have been proposed based on this concept. 

 Metabolomics has been proven to be an efficient 

strategy to assess exposure to chemical agents. It showed 

great potential for studying the toxicity of chemical sub-

stances 32, since the metabolite profile can provide a 

broad view of the physiology of a given organism 31. Ac-

cordingly, Holmes et al., (2007)33 proposed the term 

“xenometabolomics” to characterize the profile of  metab-

olites derived from the biotransformation of xenobiotics.  

 Two metabolomics-study approaches have been 

used to detect metabolites: untargeted and targeted 

metabolomics25. Untarget metabolomics is the                        

comprehensive analysis of all measurable metabolites, 

and it has been conducted to understand environmental 

toxin mechanisms 18,34–39. Biomarker candidates detected 

in the untargeted analysis can be validated by targeted 

metabolomics. Targeted metabolome analysis is based on 

biological hypothesis and quantitatively investigates                   

differential gene expression from pre-selected metabolite 

candidates. Metabolites presenting differential gene                 

expression associated with toxin exposure and/or dis-

ease must be subjected to pre-clinical and clinical                         

validation, as elucidated by Figure 2 40. 

 Pre-clinical validation can be done through in 

vitro testing by comparing control and sickle cell lines of 

pre-selected metabolite(s) or by adding metabolites to a 

cell line in order to check whether they can induce the 

development of pathological phenotypes. Next, clinical 

validation through biomarker detection in real biological 

samples must be performed in order to determine                  

biomarker robustness and reproducibility 41. Analysis of 

such data reveals that the untargeted approach and GC/

LC-MS-based metabolomics are the most common me       

tabolomics methods. However, there is no prevalent 

study design — animal, cell culture and real biological 

samples have all been applied to metabolomics studies. 

 Yet, the robustness and reproducibility of                 

metabolite profile analysis are impaired by the following 

factors: highly variable metabolite quality and quantity; 

wide range of metabolite physicochemical properties 42. 

Capillary electrophoresis, chromatography methods and 

nuclear magnetic resonance (NMR) — all associated with 

mass spectrometry — have been widely applied to 

metabolomics studies. However, none of these analytical 

methods is able to fully detect and quantify metabolites 

25,42,43. Alternatively, several procedures and mixed               

methods, such as GC/LC-MS-based metabolomics data, 

can be performed to broaden both mass spectrometry 

and physicochemical property coverage 44,45.  

 Biomarkers traditionally applied to                            

environmental exposure assessments are mostly related 

to recent exposure rather than to adverse health effects, 

which are most likely related to health risks; therefore, 

environmental risks are underestimated 16. Broad                  

assessment strategies able to detect several toxin                  

exposures and to reveal the cumulative interaction 

(synergism and antagonism) among them are key in                 

assessing the impact of environmental toxin exposure on 

human health.  

 Metabolomics is aimed at overcoming such               

limitations and fostering comprehensive analysis                    

strategies, since it enables a new perspective on the first 

molecular mechanisms triggered by environmental toxin 

exposure 46. Changes in the metabolite profile caused by 

exposure to toxins interacting with the biological system 

assumingly indicate toxicity biomarkers that can be              

applied to future studies 47. 

 Therefore, studies point towards advances in 

environmental toxicology and to a new outlook for               

assessing environmental contamination risks: “Omic” 

biomarker assessment should be advanced enough to 

detect both environmental toxins and their adverse 

health effects (disease biomarkers) in a single diagnosis. 

Biomarker data analysis should become a tool for clinical 

decision-making in order to protect, diagnose and                    
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recover human health. 

Metabonomics: Analytical Aspects 

 Metabolomics studies require rigorous                         

experimental planning due to the wide range of factors 

leading to biased and/or inaccurate results. Dudzik et al., 

(2018)48 state that a good experimental design must                

cover different variables to ensure both impartial sample 

analysis and solutions to specific biological issues. The 

literature presents several pre-analytical biological                

factors, both intrinsic and extrinsic, affecting the basal 

metabolic rate. Intrinsic factors include age, sex,                     

genotype, ethnicity, chronobiology, body mass index 

(BMI) and sample volume, whereas extrinsic factors              

include eating habits, stress, physical activity, microbiota, 

environmental toxin exposure and consumption of drugs, 

alcohol and tobacco 49–57. Individuals can be evenly                   

distributed according to weight, age and sex across all 

different groups in order to limit the effect of the                    

aforementioned factors on statistical analysis57,58.                  

Moreover, results should be normalized to minimize                 

inaccuracy caused by both metabolite concentration                

variability and method detection limit. Normalization is 

particularly important for urine samples, since urine 

metabolome is influenced by urinary volume and renal 

clearance. The following urinary biomarkers should be 

Figure 2. Stages of the discovery of new biomarkers in metabolomic studies.  

Source: Adapted from Khamis, Adamko and El-Aneed (40), reprinted with permission. 
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normalized for best results: abundant metabolic signals 

in each sample, urinary volume, creatinine levels and 

urine osmolality. Creatinine normalization is a common 

method, since the impact of external factors on urine                                

concentration can be determined by measuring                          

physiological substances in urine samples, such as                  

creatinine. In other words, urinary creatinine levels                  

determine urinary concentration. Accordingly, the                     

concentration of a given metabolite must be divided by 

its creatinine levels for normalization purposes 59,60. 

 Studies must be well controlled through                    

experimental design in order to minimize analytical               

errors and avoid result bias 42,58. Therefore, biological 

issue, study population and  biological matrices of choice 

must be well known to ensure the following: sample                

homogeneity and representativeness; proper                           

performance of analytical methods, data processing and 

statistical analysis 48.  

 Metabolome analysis uses one or more                         

combined analytical methods and bioinformatics tools to 

assess research results. This analysis is key in                            

understanding the biochemical mechanisms exposed to 

environmental toxins, since it provides qualitative and 

semi-quantitative data from affected metabolites through 

untargeted and targeted approaches 61. These                           

approaches have similar workflows, since experimental 

procedure standardization and result publication are 

high priority for result comparisons and further studies. 

Accordingly, the Metabolomics Standards Initiative (MSI) 

(http://www.metabolomics-msi.org/), conceived in 

2005, defined the procedures to be adopted in studies 

and publications to achieve such a harmonization. Both                

targeted and untargeted technologies involve the                  

following steps: defining the biological issue of interest, 

experimental design, biological sample collection and 

preparation; data acquisition and analysis; biological    

interpretation of results 17,62,63. 

 Both untargeted and targeted metabolomics 

workflows differ in the first step and in the required                   

sample preparation: the untargeted workflow starts by 

defining the biological issue of interest, which represents 

the question(s) that must be answered at the end of the 

study, whereas targeted metabolomics starts with a               

biochemical hypothesis and focuses the quantitative    

metabolite analysis based on one or more previously        

defined metabolic pathways of interest 17,63, as shown in 

Figure 3. 

Experimental Design 

 Experimental design requires systematic                  

planning and the performance of procedures such as               

Figure 3. Workflow summarized in untargeted and target metabolomics. 

Source: from author. 
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defining the biological matrix of interest, sample number 

per group, sample collection and storage. Plasma and 

urine are the most common samples, whereas other                 

samples such as saliva, sweat, exhaled air, cerebrospinal 

fluid and seminal fluid are the least common ones 64.      

Samples should be collected with due attention, since 

several lifestyle-related pre-analytical factors can affect 

the metabolite profile. Thus, data such as collection time, 

need of fasting, and anticoagulant and preservative use 

should be previously defined. Slupsky et al., (2007)57 

demonstrated that eating habits can affect urinary                  

metabolite concentration. Therefore, they recommend 

that urine should be collected in early morning hours to 

avoid variations. Urinary metabolite profile findings can 

be altered by factors such as collection and fasting        

periods, centrifugation conditions, filtration, food                        

additives (e.g. sodium azide), normalizing procedures and 

repeated freeze-thaw cycles. Plasma is assumingly more 

stable than serum, whereas serum can provide greater 

sensitivity than plasma 65. Thus, samples must be chosen 

based on the required sensitivity-reliability                  anal-

ysis results. 

 Yet, control groups should be selected to allow 

comparisons between their results and those of exposed 

groups. Although this approach has been traditionally 

applied to toxicological studies, it has been adapted: the 

exposed group is classified based on exposure intensity 

and comparison is made between the lowest and highest 

exposure groups 19,37. Thus, some factors must be consid-

ered prior to analysis procedures, such as whether the 

result comparison of studies with different approaches is 

valid and whether it should be performed with caution. 

Therefore, assessments involving discussion and                 

comparison of both traditional and modern result                   

comparison approaches should be conducted in order to 

guide the scientific community and ensure result                    

reproducibility.  

Sample Collection, Storage and Preparation 

 Metabolic processes must be stopped after                 

sample collection in order to preserve samples — this 

procedure is known as metabolic quenching. This step is 

normally accomplished by adding organic solvent to the 

samples and immediately cooling or freezing them with 

dry ice or liquid nitrogen 17,66. Samples must be stored at 

low temperatures, preferably at -80ºC, in order to                   

minimize potential bacterial contamination and sample 

degradation when instrumental analysis is performed 

long after sample collection 48. Results of studies              

assessing metabolomic profile stability in different                    

biological samples have demonstrated that metabolite 

stability depends on several factors, as follows: time                   

period between collection, processing and storage;     

number of freeze-thaw cycles; storage time and                          

temperature. Pinto et al., (2014)67 reported a 2.5-year 

stability of the plasma metabolomic profile, whereas the 

literature review conducted by Stevens et al., (2019)65 

reported a 26-month stability for urinary metabolite 

samples stored at room temperature (-25 ºC). Semren et 

al. (2018)68 reported insignificant decrease in urinary 

metabolites stored at -80 ºC for 6 months.  

 Metabolite sample preparation is one of the most 

important steps of the procedure. It should be based on 

desired approaches, biological matrices and analytical 

methods of interest. Sample preparation for untargeted 

metabolomics must be minimal in order to avoid           

metabolite loss during the process, since the                           

comprehensive metabolic analysis is the aim of the                  

preparation. This step usually involves the following               

procedures: deproteinization to minimize matrix effects 

and clogging of ionic compounds 63; solvent delipidation; 

refrigerated centrifugation to separate unnecessary             

particles such as cells, waste and high-molecular-weight 

metabolites; solvent dilution and precipitation 56,68,69. 

Next, liquid-liquid (LLE) and solid phase (SPE)                              

extractions are performed. Urine samples require                     

previous urease preparation to minimize pre-analytical 

and analytical factors of samples analyzed through the    

GC-MS method. Urea can interfere with derivatization 

and lead to incomplete reactions, since it is the most                  

abundant physiological metabolite in urine. Accordingly, 

concentrated urea can overload chromatographic                   

columns and cause chromatographic peak distortions due 

http://www.openaccesspub.org/
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to co-elution. Therefore, it is recommended to add 30 µL 

of urease to each 100 µL of urine and incubate at 37 ºC 

for 30 to 60 minutes 24,70–72. On the other hand, targeted 

metabolomics is based on selective sample preparation, 

since it aims at quali-quantitative analysis of one or more 

metabolites with similar physicochemical properties. 

Therefore, targeted metabolomics requires both highly 

selective extraction methods and preconcentration and 

clean-up procedures to eliminate distortions 64. 

Derivatization must be performed in order to improve 

metabolome coverage through the GC-MS method, since 

most natural metabolites contain non-volatile polar     

functional groups (organic acids, amino acids,                              

monosaccharides, disaccharides and steroids). Thus, 

methoxymination reactions followed by silylation — the 

most common reactions — allow improving analyte prop-

erties by making analytes volatile and thermally  sta-

ble70,73,74. Instrumental analysis through capillary  elec-

trophoresis and nuclear magnetic resonance                         

methods requires full organic solvent evaporation,                   

subsequent waste resuspension in water and dilution of 

extracts in deuterated solvents 17. 

Instrumental Analysis – Data Collection  

 A fraction of the sample is collected at the end of 

the preparation step and subjected to analytical                   

platforms for the next step: data acquisition. It is worth 

noticing that the aim of metabolome analysis is the study 

of all metabolites (untargeted) of molecular weight up to 

1500 Da or the study of part of them (targeted) - these 

analytes have different concentrations and great                    

chemical diversity. Therefore, metabolites should be             

assessed through multiplatform analyses, as they can 

cover the entire metabolome spectrum. Combined                  

chromatography and mass spectrometry (LC-MS and GC -

MS) have been the most widely performed metabolomic 

methods in the last decade. Nuclear magnetic resonance 

(NMR) and capillary electrophoresis combined with mass 

spectrometry (CE-MS) are also reported in the                        

literature75,76,77. 

 Combined chromatography and mass spectrome-

try considerably improves qualitative-quantitative analy-

sis of complex biological samples, since the analytes of a 

given sample can be separated in the chromatograph and 

moved into the mass spectrometer where they will be 

ionized, identified and quantified. When these analytical 

methods are combined, molecular entities can firstly be 

identified through chromatographic retention time and 

accurate mass measurement77. Moreover, fragmentation 

pattern can be the parameter to identify molecular              

entities when data are obtained through MS-MS (MS           

tandem)20. 

 Mass spectrometry plays a leading role in   

metabolomics research due to its high analytical                      

sensitivity and specificity, which generate ions to be              

separated in the mass spectrometer based on their mass 

(m) to charge (z) ratio (m/z). Next, the generated mass 

spectrum is compared to spectral databases or patterns 

of known substances77,78. Mass analyzers should be able 

to analyze a wide range of masses at high resolution, i.e., 

they should distinguish two m/z peaks differing by only a 

single atomic mass unit for metabolome analysis78.               

Hybrid mass spectrometers, which use more than one 

mass analyzer, such as triple quadrupole, and quadrupole 

time-of-flight (Q-TOF-MS) analyzers, improve the                   

resolution and precision of ion mass measurements. 

Therefore, they are the most appropriate analyzers for 

metabolome analysis44,79,80. Different ionization processes 

must be performed for the coupling of mass                               

spectrometers, due to structural differences between LC 

and GC methods. GC-MS uses Electron Ionization (EI) and 

chemical ionization (CI), whereas LC uses Electrospray 

Ionization (ESI) — the most common LC method —,            

Atmospheric Pressure Ionization (API) and Atmospheric 

Pressure Chemical Ionization (APCI)81.  

 Selection of analytical ionization methods must 

be based on desired polarity and molecular mass range. 

GC-MS is assumingly the most suitable method for              

low-polar, low-molecular-weight compounds, whereas LC

-MS-ESI is the most suitable for highly polar,                            

high-molecular-weight compounds. Furthermore, these 

analytical methods are highly complementary, which  

http://www.openaccesspub.org/
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explains why they are combined in order to cover the 

entire metabolome 82. 

 Yet, both methods have pros and cons. GC-MS is a 

very robust method, whose sensitivity, selectivity and 

reproducibility are suitable for simultaneous metabolite 

analysis61,83,84. Moreover, it stands out for its                                            

retention-time reproducibility and its low-cost,                    

comprehensive databases. However, it has a limitation: 

lack of comprehensive MS-MS fragmentation data 45. 

Comprehensive GC-MS-based metabolomics protocols on 

sample preparation and analytical conditions have been 

described by Fiehn (2017)85 , Garcia and Barbas (2011)70 

and Mastrangelo et al., (2015)83 . 

 The LC-MS method is particularly important to 

solve complex matrices 77. It is also suitable for         

metabolomics studies due to its great versatility (variety 

of mobile and stationary phases) 17,44,77,86. Hydrophilic 

interaction liquid chromatography (HILIC) has been                

reported for polar metabolite analysis, polyhydroxy              

metabolite analysis and reverse phase chromatography 

(relatively non-polar metabolite analysis) 38,77,86. The       

advantages of this method are high precision and                     

resolution; analytical sensitivity and specificity.                       

Furthermore, LC-MS requires simplified sample                      

preparation and is applicable to complex polar and                  

nonpolar mixtures. The only disadvantage of LC-MS lies 

on the high cost of replacing consumables by highly pure 

and compatible mobile phases 45. 

 Procedures to assess data acquisition quality 

should be performed in sequence analysis. Such a quality 

is assessed through quality management processes like 

Quality Assurance (QA) and Quality Control (QC) 48,87,88. 

QA involves all the planned and systematic activities               

implemented in the pre-analytical phase to ensure that 

preset quality requirements will be fulfilled by                       

subsequent analytical processes. Currently, there are no 

recommended guidelines for the QA process. QC can be 

defined as the operational techniques and activities used 

to measure and report quality requirements during and 

after data acquisition. Quality control samples can be       

collected by solutions presenting authentic chemical 

standards, samples pooled with equal aliquots of           

biospecimens from different biological sources or                

samples pooled with equal volumes 42,48,88. Pooling                  

samples are commonly used in QC because they show the 

complete metabolite structure of all biological samples in 

a given study. Thus, significant quality control deviations 

indicate analytical variability resulting from sample    

preparation or instrumental analysis phases. This                

strategy has been applied to assess the stability and              

performance of control systems 43,89. Dudzik et al., (2018)

48 recommend intermittent QC analysis after every 5 to 

10 samples throughout the analytical run and state that 

variation coefficients lower than 30% in each peak 

should be considered acceptable. Graphical                                

representation of QC results through PCA models is a 

practical way to assess control stability, since intense 

clustering indicates good accuracy 48,90.  

 However, the 2017 questionnaire developed by 

the Metabolomics Society Data Quality Task Group 

(DQTG), assigned to 97 employees from 84 metabolomics 

companies, evidenced that there is no consensus on QC 

procedures and decision-making regarding data quality 

in the international community87. Thus, further research 

should be encouraged to foster the development of                    

reliable QA and QC strategies. These strategies should be 

commonly applied to metabolomics workflows in order 

to improve the overall quality of results. 

Data Analysis and Interpretation  

 Metabolome analysis captures a huge amount of 

exceedingly complex biochemical data (disease or                   

chemical exposure) that makes manual inspection               

impractical. Thus, bioinformatics tools are indispensable 

for data processing. Untargeted metabolomics data               

analysis is laborious and involves several steps, such as: 

converting raw data into datasets; data collection and 

alignment; retention time and baseline correction,                  

spectral deconvolution, data normalization; metabolite 

identification17. There are several software for analyzing 

data collected through combined analytical methods, 

such as XCMS®, AMDIS®, Mass Professional Profile® and 

MetAlign® 25,70,85,86,91,92. On the other hand, targeted 
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metabolomics data analysis is focused on the quantitative 

assessment of previously selected metabolites 17. 

 The normalized dataset is subjected to                         

multivariate chemometric analysis through unsupervised 

methods, such as principal component analysis (PCA), 

and supervised methods, such as partial least                          

squares-discriminant analysis (PLS-DA) and orthogonal 

projections to latent structures discriminant analysis 

(OPLS-DA). These methods have clear purposes: PCA        

preliminarily identifies sample clusters  to reduce the 

dimensionality of large datasets, in addition to allowing 

the identification of outliers. On the other hand,                   

PLS-DA is a regression method that reveals the variables 

mostly causing result variability and identifies                         

differences between assessed groups. Finally, OPLS-DA 

identifies potential biomarkers 17,93. Several tools are 

available for multivariate data analysis, including: 

MetaboAnalyst® 94,95 - a set of free online tools that can be 

used in both pre-processing and multi- and univariate 

statistical analysis and metadata interpretation;                 

SIMCA-P® paid software developed by Umetrics;             

Matlab® 17. 

 Univariate statistical tests such as Student’s                  

t-test, Analysis of Variance (ANOVA) and Mann-Whitney 

U test are commonly performed to assess the statistical 

significance of each peak (molecular entity) 17,36,74,92. 

 Commercial databases such as NIST, HMDB, 

Blood Exposome and METLIN have been accessed to help 

identifying metabolites 86,91. However, it should be                      

noticed that most metabolites are not detectable. 

Hounoum et al. (2016)86 state that approximately 25% of 

them are identified by attempt, since many metabolites 

are not added to metabolite databases and repositories. 

 To harmonize metabolomics  studies, in 2005, 

the Society of Metabolomics created the Metabolomics 

Standards Initiative (MSI), which advocates the                  

standardization of the entire experimental procedure, 

including 4 confidence  levels for identification of                    

metabolites 122.  

 Yet, biological data interpretation is as important 

as the previous steps. This procedure is performed by 

placing the identified metabolites into a metabolic                     

pathway or network in order to identify their variation 

rate and compare it to that of the control group. This step 

aims at finding the answer to the biological question                         

established at the beginning of the workflow to ensure 

meaningful data interpretation17,92. Pathway mapping, 

visualization and enrichment analyses are common and 

accessible tools in databases86 such as Kyoto                             

Encyclopedia of Genes and Genomes (KEGG)96, MetaCyc 

97, MarVis-Pathway98 and RaMP99 used to find the                    

mechanistic view of identified metabolites100.                         

Quantification of identified metabolites is a common                    

procedure of targeted metabolomics 17. 

 Piovezan (2014)90 states that metabolomics               

results should be systematically reviewed at the end of 

each workflow step. Analytical validation is performed 

through the following procedures: visual inspection of all 

analyses and of LC analysis’ pressure curves; evaluation 

of reprocessed data according to the number of                           

molecules extracted per sample, their total signals and QC 

results. On the other hand, chemometric models are                 

evaluated through statistical tests such as R2 and Q2, or 

through cross-validation and permutation testing. Finally, 

biological validation must be performed in targeted 

metabolomics studies90. 

Metabolomics Application To Environmental                    

Toxicology 

 When mixed chemicals (xenobiotics) enter the 

body, they can either act in single metabolic pathways or 

overlap in common metabolic pathways, according to 

Vineis (2018)101. Thus, estimating of low-level chronic 

chemical exposure risks through conventional                           

epidemiological studies is insufficient, since it cannot     

cover all the complexity of cumulative exposure effects. In 

view of this limitation, new strategies for cumulative risk 

assessment should be developed in order to provide real 

estimate of such risks102.  Therefore, new technologies 

have been developed to provide new methods to assess 

cumulative exposure and its health risks. Metabolomics 

has been used to assess cellular disorders induced by 
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chemical exposure, estimate disease risk and detect new 

biomarkers24,40, since environmental pollutants lead to 

early biochemical changes in metabolite levels, which can 

reveal disease onset and prognosis. These changes in    

metabolite levels are called metabolomic signatures or 

metabolomic profiles. Thus, metabolomics allows                   

qualitative and quantitative analysis of the metabolomic 

profile in body fluids, before the onset of clinical                    

symptoms. Moreover, molecular profiling can be used to 

identify exposure, diagnosis and/or prognosis                         

biomarkers103. Such a comprehensiveness significantly 

increases the opportunities for toxicological and                       

environmental health actions. It also encourages                         

discussions on a new biomarker classification, whose 

metabolomic profile (metabolomics biomarker)                       

embodies the role of exposure and/or effect biomarker. 

 In view of the high risk of developing chronic 

diseases due to environmental chemical exposure16,102, 

the lack of publications on metabolomics approach to 

environmental chemical exposure reveals that this 

knowledge field has been little explored. Therefore,                  

further research should be encouraged in order to unveil 

the poisoning pathways of chemicals and develop 

measures to cure, protect and recover the health of                   

exposed individuals. Some relevant studies proving 

metabolomics’ potential to assess environmental                    

chemical exposure are described below. 

 Studies carried out in China have assessed                    

exposure to arsenic19,37—  an environmental threat to 

human health, since exposure to it can lead to several 

diseases, such as cancer, cardiovascular diseases and  

peripheral neuropathy104. Zhang et al., (2014)19 assessed 

the urinary metabolome from Chinese men 

environmentally exposed to arsenic through the HPLC/               

Q-TOF-MS method. Individuals were classified according 

to urinary arsenic level and metabolite profile 

(comparison between highest and lowest exposure 

groups). Untargeted metabolomics detected five                  

dose-dependent arsenic, differentially expressed 

metabolites (testosterone, guanine, hippuric acid,                    

N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and 

serine). Based on such results, the authors stated that 

endocrine disruption and oxidative stress are the likely 

causes of arsenic poisoning. They assessed the biomarker 

potential (selectivity and specificity) of candidates 

through the ROC (Receiver Operating Characteristic) 

curve. Results showed that testosterone, guanine, 

hippuric acid and the combination of them all were gene 

signatures of arsenic-induced metabolic disturbances. 

AUC (Area Under the Curve) measures the overall 

potential of a test to discriminate whether a specific 

condition is present or not. AUC biomarker values greater 

than 0.85 are usually considered acceptable for clinical 

application 19,105. 

 Chemical exposure during pregnancy has          

attracted the attention of the scientific community. The 

effects of arsenic on pregnant women’s health have also 

been assessed. The urinary metabolite profile of Chinese 

pregnant women was analyzed for the first time through 

the UPLC/Q-TOF-MS analytical method in order to                   

identify the adverse effects of low-level arsenic exposure. 

The urinary arsenic of all participants was measured and 

used as reference to group urine samples according to 

exposure level. Metabolome analysis aimed at assessing 

metabolite profile and comparing the lowest and highest 

exposure groups. Results indicated the detection of 9                      

significantly altered metabolites. The predictive capacity 

of these metabolites was assessed through the ROC curve, 

which demonstrated that all 9 metabolites had enough 

predictive capacity (AUC > 0.8) to be considered potential 

biomarkers 37. Metabolic disturbances in pregnant                  

women and their fetuses resulting from exposure to                  

perfluoroalkyl substances (PFASs), persistent organic 

pollutants, were reported by Li et al (2021) 106. The                  

authors identified that exposure to PFAS led to changes in 

steroid hormone biosynthesis and acid metabolism fatty 

acids, vitamins, amino acids and lipids. The pathway                      

enrichment analysis showed that 3-fatty acid metabolism 

and retinol were significantly correlated with exposure to 

PFAS in maternal blood, and sterol metabolism was found 

to be significant in both maternal serum and umbilical 

cord serum. In addition, serum metabolomics from 102 
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Chinese pregnant women revealed disruption of thyroid 

hormone metabolism and glyceraldehyde metabolism. 

These disturbances have been associated with birth     

impacts resulting from prenatal exposure to pesticides 

such as mecarbam and β-hexachlorocyclohexane                     

(β-HCH) 107. 

 A recent study conducted by Wang et al. (2018)

104 assessed metabolite changes induced by combined 

exposure to polycyclic aromatic hydrocarbons (PAHs) 

and short-chain chlorinated paraffins (SCCPs) in Hep-G2 

cells. Significant changes have been detected in several 

metabolic pathways, such as phospholipid metabolism, 

fatty acids, tricarboxylic acid cycle, glycolysis and purine 

metabolism. Wang et al. (2018)104 highlighted that lipid 

metabolism disorder was induced by combined exposure 

to PAHs and SCCPs. Accordingly, this finding requires 

further research due to its severe impact on human 

health. 

 PAHs are organic contaminants having at least 

two condensed or fused aromatic ring structures. They 

are ubiquitous in the environment and stem from the 

incomplete combustion of organic compounds. PAHs are 

present as vapors or adhered to particulate matter.                 

Exposure to PAHs can cause cancer, teratogenesis and 

mutations20,105,106. The harmful effects of chronic                      

exposure to PAHs were assessed by  Wang et al., (2015)

107 in 566 Chinese volunteers — children and elderly                  

individuals. Untargeted urinary metabolome analysis                 

detected 18 discriminating metabolites between the                

exposed group and the control group, of which                          

dodecadienylcarnitine and 1-hydroxyphenanthrene                 

(1-OHPh) were potential biomarkers to assess the               

exposure of the general population to PAHs. The authors 

suggest that these metabolic changes are caused by                   

PAH-induced oxidative stress, and that supplemental      

antioxidants should be administered to neutralize or             

reverse the harmful effects of these hydrocarbons.  

 Heavy metals are chemicals of great public health 

concern. Cadmium metal comes from both natural 

sources and human environmental impacts, and it is                   

suitable for a wide variety of industrial applications. This 

metal is a human carcinogen and exposure to high doses 

of it can lead to adverse health effects such as itai-itai 

disease, which causes osteomalacia, osteoporosis and 

renal tubular dysfunction108,109. Cases of death from cad-

mium poisoning have been reported in Thailand and 

Japan24,109,110. Contaminated individuals living in Mae Sot 

City, Tak province, Thailand were selected for research 

on the metabolite profile of individuals intoxicated by 

cadmium. The study aimed at identifying cadmium bi-

omarkers (urinary cadmium) and the urinary metabolite 

profile of intoxicated and healthy patients (control) 

through GC-MS analysis. Results indicated that urinary 

citrate and myo-inositol may be potential biomarkers for 

Thais exposed to Cd. Moreover, urinary citrate has also 

been proven to aid in early  nephrolithiasis diagnosis and 

prevention24. Cadmium-induced nephrotoxicity was                 

investigated in another recent study, conducted by Zeng 

et al (2021) 116. The urinary metabolic profile of 149                    

individuals (99 women and 45 men) residing in areas 

contaminated with different levels of cadmium. The               

metabolic profile showed that exposure to this metal 

caused alternations in the creatine pathway, amino acid 

metabolism, especially tryptophan metabolism,             

aminoacyl-tRNA biosynthesis and purine metabolism, 

regardless of gender. Therefore, these findings should be 

explored to identify early-effect biomarkers that can be 

used to predict risk and prevent cadmium-induced                  

nephrotoxicity. 

 Another environmental contaminant of                    

toxicological importance is particulate matter (PM), 

which is among the main air pollutants. PM consists of 

liquid or solid particles suspended in the air, whose            

composition is quite heterogeneous and includes toxic 

substances such as polycyclic aromatic hydrocarbons 

(PAHs) and metals (Pb, Hg, V, Cd, Cr and others) 117,118. 

Several studies have shown the association between              

prolonged exposure to PM, especially PM2.5 (<2.5 μm in 

aerodynamic diameter) and an increased risk of                   

cardiovascular and metabolic diseases 119,120. Chu et al. 

(2021)121 performed a prospective cohort study to                       

investigate metabolic changes in plasma of 78 Chinese 
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university students, 36 men and 42 women; exposed to 

PM2.5 and PM10 (mean concentration of 53 μg/m3 and 93 

μg/m3 respectively), through untargeted metabolomics. 

All participants underwent 8 rounds of physical               

examination to assess cardiopulmonary function and     

collect plasma samples for metabolomic analysis. Air  

purifiers were installed in 40 dormitories of the 78                

participants for 14 days. Plasma metabolomics identified 

25 differential metabolites associated with exposure to 

PM2.5 and none associated with exposure to PM10. Of the 

78 students, 9 were considered susceptible to exposure 

to PM2.5 because they had diastolic pressure (DP) and 

forced levels vital capacity (CVF) significantly associated 

with the variation of PM2.5. By comparing their plasma 

metabolic profile to that of healthy individuals, 6                       

differential metabolites were identified: (lysoPC (P-20: 

0), lysoPC (P-18: 1 (9z)), lysoPC (20: 1), lysoPC ( O -16:0), 

choline and found 1,3-diphenylprop-2-en-1-one). These 

findings pointed out that long-term exposure to PM2.5 

leads to changes in phospholipid catabolism.                                 

Furthermore, LysoPC (P-20: 0) and LysoPC (P-18: 1 (9z)) 

increased significantly after the air purification                       

intervention. Thus, the authors suggested the use of the 

six discriminating metabolites as potential biomarkers to 

identify individuals sensitive to exposure to PM 2.5; and 

LysoPC (P-20:0) and LysoPC (P-18:1 (9z)); as biomarkers 

of exposure to PM2.5. 

 The herein described studies highlight the              

importance of metabolomics as tool to assess the impact 

of environmental toxin exposure. Thus, this research    

approach is expected to replace epidemiological                      

questionnaires that oftentimes underestimate                

environmental factors assessed by epidemiological                

studies.  

Conclusions 

 The herein literature review sought to present 

the following data: important concepts of metabolome 

analysis; the steps of both untargeted and targeted 

metabolomics workflow; relevant publications on                   

chemical exposure. It is worth noticing that metabolomics 

is a holistic method and, as such, it can provide early                

diagnosis of alterations in xenobiotic metabolism, which 

may contain metabolic patterns or signatures able to    

detect toxin exposure and to quantify environmental          

toxins, or to reveal patients’ health or disease status.   

 The present study compilation has shown that 

most studies are based on metabolome analysis through 

mixed methods, mainly LC-MS and GC-MS. Advances in 

analytical methods and the recent improvement in data 

processing tools have contributed to the evolution of 

metabolomics as scientific field. Moreover, these factors 

have helped integrating metabolomics to studies on the 

relationship among toxic mechanisms, exposure to                 

environmental toxins and early discovery of biomarkers. 

 Yet, the chemical exposure field — mainly  

chronic low-level exposure to chemical agents — remains 

largely unexplored. Therefore, omics-based biomarkers 

should be urgently applied to clinical decision-making, 

mainly to help protecting, diagnosing and recovering  

human health. 
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