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Abstract  

 Conversion of biomass into fermentable sugars is a major requirement for successful and cost-effective 

biofuels production.  The conversion of xylan to sugars requires multiple enzymes including α-glucuronidase.  Here 

we report the cloning, expression, purification and characterization of the α-glucuronidase from Dictyoglomus 

turgidum (DtuAgu). DtuAgu is an intracellular protein of 685 amino acids and a predicted molecular weight of 79.4 

kD.  Enzymatic activity was optimum between pH 7.0 and 8.0 and at 85°C. The specific activity of the enzyme was 

10 u/mg when measured using mixed aldouronic acids. The specific activity on isolated glucuronoxylan was 

approximately 20% of the value obtained with xylooligosaccharides. DtuAgu significantly improved xylan 

conversion to xylose when evaluated using two mixtures of thermostable bacterial enzymes and two sources of 

xylan.  DtuAgu has the potential to be a key player in thermostable enzyme cocktails for the conversion to biomass 

to biofuels.α  
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Introduction  

 Plant-based biomass is made up of two main 

polysaccharide components, cellulose and hemicellulose. 

Conversion of these polysaccharides to bio-based fuels 

and chemicals requires the degradation of the cellulose 

and hemicellulose to sugar monomers via enzymatic 

processes. A number of enzymatic systems have been 

described for achieving these conversions, including 

systems from bacterial [1] and fungal [2-5] sources.  

The degradation of these polysaccharides is made more 

difficult by the complexity of the substrates. While 

cellulose is a homopolymer of β-1,4 linked glucose, 

xylans are a heterogenous collection of molecules 

sharing only a β-1,4 linked xylose backbone.  

Arabinoxylans contain xylose residues highly substituted 

with α-(1,2)-linked arabinose, α-(1,3)- linked arabinose 

as well as xylose residues substituted with both α-(1,2), 

α-(1,3)-linked arabinose, with a ratio of arabinose                   

to xylose of  0.5 to 0.6 for wheat arabinoxylan [6].  

Glucuroxylans, found in hardwoods, contain α-(1,2)-

linked D-glucuronic acid and 4-O-methyl-D-glucuronic 

acid residues as well as acetic acid. These D-glucuronic 

acid and 4-O-methyl-D-glucuronic acid residues                     

are attached to roughly every tenth xylosyl residue in 

the xylan backbone. Arabinoglucuronoxylans,                

found in softwoods, contain both                                            

α-(1,2)-4-O-methyl-D-glucuronic acid and α-(1,3)-linked 

arabinose residues. 

 Enzymatic degradation of xylans requires the 

participation of a number of enzymes to completely 

convert the xylans to monosaccharides.                                  

α-Glucuronidases, α-arabinofuranoidases, and esterases 

are needed to remove the sidechains from the xylans, 

and xylanases and xylosidases are needed to convert the 

backbone to xylose. α-Glucuronidases (EC 3.2.1.139) 

hydrolyze the α-1,2 glyosidic bond between                    

α-D-glucuronic acid (GlcA) or its 4-O-methyl ether 

(MeGlcA) and xylose residues of xylooligosaccharides. 

Structurally, α-glucuronidases are found in glycoside 

hydrolase families 67 (GH67)   [7-11]  and 115 (GH115) 

[12-16].  These enzymes are much more efficient in 

removing uronic acid from glucuronoxylooligosaccha-

rides than from native glucuronoxylan or              

arabinoglucuronoxylan [17]. The structures of only two 

GH67 α-glucuronidases, from Geobacillus         

stearothermophilus [18] and Cellvibrio japonicus 

Ueda107 [7] have been determined and published.  The 

limited number of α-glucuronidases that are available 

suggest that additional characterized GH67 and GH115 

family members may assist with developing effective 

means of degrading xylan. High temperature 

bioprocesses have numerous advantages over their 

mesophilic counterparts [19].  Development of new and 

highly effective enzymes including α-glucuronidases that 

operate at high temperature will speed up bioprocess 

development. 

 Dictyoglomus species are genetically distinct 

organisms that have been identified in anaerobic, 

hyperthermophilic hot spring environments [20-31]. 

There are only two validly described Dictyoglomus 

strains, Dictyoglomus thermophilum which was isolated 

from Tsuetate Hot Spring in Kumamoto Prefecture, 

Japan [32].  The genome of D. thermophilum has been 

sequenced [31],  and a number of potentially useful 

enzymes including amylases [33,34], xylanases [35,36], 

a mannanase [37] and an endoglucanase [38] have 

been cloned and characterized. The second described 

species, Dictyoglomus turgidus, was isolated from a hot 

spring in the Uzon Caldera, in eastern Kamchatka, 

Russia [30]. The name Dictyoglomus turgidus was 

subsequently corrected to Dictyoglomus turgidum [39].   

Enzyme library construction and carbohydrase screening 

was performed using D. turgidum genomic DNA [40], as 

well as whole genome sequencing [41]. Preliminary 

results on the cloning and successful evaluation of the 

D. turgidum α-glucuronidase (DtuAgu) have been 

reported [42]; here we present the detailed characteri-

zation of the enzyme. 

Material and Methods  

Materials 

 D. turgidum strain 6724 T was obtained from 

the Deutsche Sammlung von Mikroorganismen und 

Zellkulturen GmbH (DSMZ). 10G electrocompetent E. coli 

cells and pEZSeq (a lac promoter vector), were obtained 

from Lucigen, Middleton, WI.  Wheat arabinoxylan (low 

viscosity) and α-D-glucuronidase test kit K-AGLUA were 

obtained from Megazyme International (Wicklow, 

Ireland). Polyacrylamide electrophoresis gels were 

obtained from Bio-Rad, Hercules, CA and Bullseye             

Pre-stained Protein ladder was obtained from Midwest 

Scientific (Valley Park, MO). Pierce™ Coomassie Plus 

(Bradford) Assay Kit was obtained from Thermo-Fisher 

(Waltham, MA).   Beechwood 4-O-Methyl-D-glucurono-D

http://www.openaccesspub.org/
http://openaccesspub.org/
https://openaccesspub.org/journal/jen
https://openaccesspub.org/journal/jen/copyright-license
https://doi.org/10.14302/issn.2690-4829.jen-20-3480


 

 

Freely Available  Online 

www.openaccesspub.org     JEN         CC-license       DOI :  10.14302/issn.2690-4829.jen-20-3480                   Vol-1 Issue 2 Pg. no.–  36  

-xylan (glucuronoxylan), vancomycin, ampicillin, Vivaspin 

20 ultrafiltration units with 10,000 mwco membranes, 

Sephacryl S-400 High Resolution and Gel Filtration 

Markers Kit for Protein Molecular Weights                         

12,000-200,000 Daltons were obtained from Millipore 

Sigma, St. Louis, MO. Ammonia fiber expansion               

(AFEX)-treated corn stover was obtained from the Great 

Lakes Bioenergy Research Center (GLBRC), Madison, 

WI. Secreted Geobacillus xylanase P005 

(G11MC16DRAFT_1587), intracellular Geobacillus 

xylanase P006 (Y412MC52_1840), Geobacillus                

α-arabinofuranosidase (Ara1) (P031, G11MC16DRAFT_1557), 

and Geobacillus xylosidase (Xyl1) (P046, Y412MC61_2711) 

were obtained from C5-6 Technologies LLC (Fitchburg, 

WI). 

Methods 

 D. turgidum DSM 6724 TM was grown and a 

genomic library prepared as described previously 

[41,43]    YT plate media (16 g/l tryptone, 10 g/l yeast 

extract, 5 g/l NaCl and 16 g/l agar) was used in all 

molecular biology screening experiments. Terrific Broth 

(12 g/l tryptone, 24 g/l yeast extract, 9.4 g/l K2HPO4, 

2.2 g/l KH2PO4, and 4.0 g/l glycerol added after 

autoclaving) was used for liquid cultures.   

 The genomic DNA sequence was converted to 

protein sequence using the Expasy Translate tool              

https://web.expasy.org/translate/?

_ga=1.260305485.1997906226.1473781687.   

 InterProScan Family analysis (http://

www.ebi.ac.uk/Tools/InterProScan/ ), and BLASTP (Basic 

Local Alignment Search Tool [44] (http://

blast.ncbi.nlm.nih.gov/Blast.cgi)  analysis tools were used 

to compare DtuAgu with other proteins in the database. 

Phylogeny analysis was performed using software at 

http://www.phylogeny.fr/version2_cgi/index.cgi.  

 Sequence alignment of D. turgidum, T. maritima, 

and G. stearothermophilus α-glucuronidase sequences 

was performed using T-Coffee software at http://

tcoffee.crg.cat/apps/tcoffee/result?rid=328b2609               

[45-47].  For tree construction, multiple alignments were 

run using ClustalW  [48] alignment curation was done to 

remove positions with gaps [49], construction of the 

phylogenetic tree was done using PhyML  [50], and 

visualization was done using TreeDyn [51].               

Determination of the presence of absence of a signal 

peptide was performed using SignalP [52].                          

Three-dimensional structure prediction was performed 

using SWISS-MODEL (https://swissmodel.expasy.org ). 

 The α-glucuronidase gene was amplified, ligated 

into pET28A, and transformed into BL21(DE3) E. coli 

competent cells. Recombinant clones were cultured 

overnight at 37°C, 100 rpm, in 100 ml Luria Broth 

containing 50 mg/l kanamycin. Expression was induced 

using 1 mM IPTG, and cultures were harvested 18 h 

after induction. Cells were pelleted by centrifugation, 

and the pellets were lysed by sonication. Proteins were 

purified using standard methods for His-tagged           

proteins [53]. Protein purity and approximate molecular 

weight were determined by SDS PAGE on Bio-Rad 4% to 

20% acrylamide gels using the Bullseye Pre-stained 

Protein ladder.  Protein concentration was determined 

using the Coomassie Plus (Bradford) Assay Kit using 

bovine serum albumin as standard.   Solution molecular 

weight was determined by gel filtration using a 2.5cm x 

70 cm Sephacryl S-400 HR column equilibrated with 100 

mM Tris-HCl pH 8.0 containing 250 mM NaCl calibrated 

with the Millipore Sigma Gel Filtration Markers Kit. 

 The activity of the purified enzyme was 

determined using the Megazyme K-AGLUA assay kit 

manual method.   Enzyme was incubated in 1% solution 

of NaBH4-reduced Mixed Aldouronic Acids 

(Tri:Tetra:Penta = 2:2:1; Megazyme, O-AMXR) in 50 

mM sodium acetate, pH 5.8 at 70°C for 20 minutes, 

followed by measurement of the formed glucuronic acid 

using the supplied method.  Measurement of the enzyme 

activity with 4-O-Methyl-D-glucurono-D-xylan was 

conducted as described above, except a 2 g/l solution of 

4-O-Methyl-D-glucurono-D-xylan in 50 mM sodium 

acetate, pH 5.8. One α-glucuronidase unit will produce 1 

micromole of reducing sugar per minute at 70°C and pH 

5.8.  Enzyme activities were measured in triplicate using 

at least two separate enzyme samples. For        

polysaccharide hydrolysis experiments, monosaccharide 

release was determined using 1000 ml of 0.2% 

polysaccharide in 100 mM acetate buffer, pH 5.8 and 

50°C. In addition, all long-term reactions contained 5mg/

ml vancomycin and 10mg/ml ampicillin to prevent 

microbial growth. Enzyme dosing unless noted elsewhere 

was 20 mg/ml of pure enzyme. Aliquots of the reaction 

mixture were removed, the reaction was stopped by 

incubation at 95°C, and xylose production was measured 

using the Megazyme K-XYLOSE xylose kit using the 

manufacturer’s instructions. All assay values are the 
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average of triplicate measurements performed on at least 

two samples.  

Results 

 The protein sequence of DtuAgu was             

translated from the genomic DNA sequence (Figure 1) 

corresponding to gene Dtur_1714. The protein sequence 

is available as UniProtKB - B8E3B2 (B8E3B2_DICTD) and 

NCBI Reference Sequence: WP_012584061.1. 

 Phylogenetic analysis was conducted using the 

software package Phylogeny.fr with the most closely 

related  α-glucuronidase sequences identified by BLAST 

analysis. The secreted, fungal Trichoderma reesei α-

glucuronidase was used to root the tree (Figure 2). 

DtuAgu is highlighted in red, while the only two other 

characterized thermostable α-glucuronidases, G. 

stearothermophilus and T. maritima α-glucuronidases, 

are highlighted in blue. 

 The phylogenetic analysis shows that DtuAgu is 

closely related to two other Dictyoglomus                       

α-glucuronidases. The next closest relatives of DtuAgu 

are α-glucuronidases from two families of 

the thermophilic, gram-negative phylum Thermotogae, 

Thermatogaceae and Petrotogaceae. DtuAgu is                  

also closely related to members of the genus 

Caldicellulosiruptor, a group of organisms previously 

claded with Thermoanaerobacterium.  None of the   

Caldicellulosiruptor  α-glucuronidases have been cloned 

and characterized.  DtuAgu is only distantly related to 

the well-characterized, α-glucuronidase of the                    

gram-positive G. stearothermophilus (GstAgu) and other 

Geobacillus species.   Sequence Alignment of DtuAgu 

with the characterized GstAgu and T. maritima                     

α-glucuronidase (TmarAgu) using T-Coffee software 

identifies 388/687 amino acid identities between GstAgu 

and DtuAgu and 475/687 amino acid identities between 

DtuAgu and TmarAgu. The sequence matches are not 

evenly distributed throughout the three proteins, with 

most of the sequence divergence occurring within the 

first 190 amino acids of the proteins (Figure 3). 

Based on SignalP analysis, the enzyme did not possess a 

signal peptide and is most likely an intracellular enzyme.   

 The gene encoding DtuAgu was cloned into E. 

coli with a N-terminal 6-His affinity tag and expressed.  

After cell lysis and clarification, the enzyme was purified 

using a single step of immobilized metal affinity 

chromatography (IMAC) to >95% purity (Figure 4). 

Based on the amino acid sequence of DtuAgu, the 

predicted molecular weight of the protein is 79,447 

daltons, slightly higher than the value predicted by the 

mobility on SDS PAGE.    

 DtuAgu had a temperature optimum of 85°C 

when assayed at pH 7.5 (Figure 5), and a pH optimum 

between pH 7.0 and 8.0 at 70°C (Figure 6).   

 When the assayed at 70°C, pH 7.5, the specific 

activity of DtuAgu was 10.0 ± 1.0 U/mg using the 

Megazyme Mixed Aldouronic Acids.  When assayed at 

70°C, pH 5.8, conditions identical to those used by our 

group for biomass hydrolysis using thermophilic 

cellulases and xylanases, DtuAgu had a specific activity 

of 2.0 ± 0.2 U/mg when assayed using the same 

substrate.  The specific activity was highly reproducible 

when assayed using a single lot of Megazyme substrate, 

but different substrate lots gave values differing by as 

much as 30%.  Unlike other α-glucuronidases, DtuAgu 

had detectable activity on intact xylan, with a specific 

activity of 0.4 ± 0.1 U/mg at 70°C, pH 5.8, using 

glucuronoxylan. 

 To better understand the activity of the enzyme 

in the presence of other xylan-degrading enzymes,                  

α-glucuronidase activity was assayed by measuring 

percent of xylose released from substrates using             

control mixtures of xylanase, xylosidase and                                      

α-arabinofuranosidase. The specificity of DtuAgu was 

first evaluated at pH 5.8 and 60°C using low viscosity 

wheat arabinoxylan, a substrate that contains no 

MeGlcA.  As expected, the results (Table 1) show 

DtuAgu does not yield a statistically significant increase 

in xylose production when evaluated with either P006 

and P031, or P006, P031, and P046. Xylose conversions 

of >100% are the result of increased recovery of xylose 

from enzymatic hydrolysis versus acid hydrolysis. 

 DtuAgu was then evaluated using two 

substrates containing MeGlcA, glucuronoxylan and             

AFEX-treated corn stover. Glucuronoxylan was 

hydrolyzed at pH 5.8 and 60°C using either P006, P031, 

and P046 (Control 1) P005, P031, and P046 (Control 2) 

with and without supplemental DtuAgu. Hydrolysis of 

glucuronoxylan from beechwood was conducted as 

described in Materials and Methods. The predominant 

sidechain substitution in beechwood xylan is MeGlcA, 

13% of the polymer weight. Arabinose and acetyl 

groups are present in only very low levels in this 
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Figure 1. DtuAgu Protein Sequence (Dtur_1714) 

Figure 2. Phylogenetic Tree of α-Glucuronidases 
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Figure 3. Sequence alignment of DtuAgu, TmarAgu and GstAgu 
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Figure 4. SDS PAGE of Purified DtuAgu 

Legend: SDS PAGE of purified DtuAgu.  Lane 1, MW 

standards; Lane 2, 1 mg; Lane 3, 2 mg; Lane 4, 5 mg; 

Lane 5, 10 mg. 

Figure 5. Temperature-activity Relationship of DtuAgu 
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substrate.  DtuAgu significantly improves the production 

of xylose from this substrate, increasing xylose yield 

22% to 28% with the Control 1 enzymes, and 30% to 

32% with the Control 2 enzymes.  Fig 7 

 The experiment was repeated using the same 

enzymes and reaction conditions, with AFEX-treated 

corn fiber.  The corn fiber xylan contains significantly 

less MeGlcA and more acetyl and arabinose substitution 

than beechwood xylan.   Again, DtuAgu increased xylose 

yield 4% to 7% with the Control 1 enzymes, and 12% to 

13% with the Control 2 enzymes. Fig 8 

Discussion 

 In most proposed processes the conversion of 

biomass to fuels requires first the pretreatment of 

biomass to remove lignin and improve enzymatic 

digestibility, second, the conversion of the pretreated 

mass to monosaccharides, and finally, the fermentation 

of the monosaccharides to fuels and chemicals [54].  

The complexity of the cellulose and hemicellulose 

components found in the biomass requires many 

individual enzymes to achieve high-level conversion.  

The cellulose-degrading enzymes needed include endo-

acting and exo-acting cellulases and β-glucosidases, and 

the hemicellulose-degrading enzymes needed include 

xylanases, β-xylosidases, α-arabinofuranosidases, xylan 

esterases, and α-glucuronidases. Effective conversion of 

just the cellulose component still requires numerous 

hemicellulose-degrading enzymes to achieve this                

goal [42]. Further complicating the problem of biomass 

degradation is that several of the enzymes including                

β-glucosidases, β-xylosidases, α-arabinofuranosidases, 

xylan esterases, and α-glucuronidases are normally 

intracellular enzymes and must be prepared separately 

and added to the cocktail of secreted enzymes. Finally, 

all enzymes in the final cocktail must have similar pH 

and temperature optima that allow them to work under 

the same reaction conditions.   

 This work describes the cloning, purification and 

characterization of the α-glucuronidase from the 

Figure 6. pH-activity Relationship of DtuAgu 

Enzyme Mixture Conversion, 20 hr Conversion,  44 hr 

P006 + P031 59% 59% 

P006 + P031 + DtuAgu 63% 60% 

P006 + P031 + P046 106% 104% 

P006 + P031 + P046+ DtuAgu 104% 112% 

Table 1. Arabinoxylan Hydrolysis 
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Figure 8. AFEX Corn Stover conversion 

Figure 7. Glucuronoxylan conversion 
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hyperthermophile, D. turgidum.  The purified DtuAgu is 

a 79.4 kD protein, similar in size to TmarAgu, 76.2 kD, 

and GstAgu, 78.4 kD. The gene encoding DtuAgu is 

most closely related to α-glucuronidase genes of other 

Dictyoglomus species, followed by Thermotoga and 

Caldicellulosiruptor species. Alignment of the DtuAgu, 

TmarAgu, and GstAgu genes show a divergent, 

approximately 200 amino acid N-terminal region of the 

protein; the remainder of the proteins are highly 

conserved in sequence.  The differences in the                      

N-terminal sequences may be responsible for differences 

in the native forms of the enzymes. In this work, DtuAgu 

was found to be monomeric in solution, while TmarAgu 

was reported to be multimeric [55] and GstAgu was 

reported to be dimeric [18,56]. The temperature 

optimum of DtuAgu is 85°C, identical to that reported 

for TmarAgu [55] , and significantly higher than the 65°

C temperature optimum for GstAgu [56]. The pH/activity 

curve of DtuAgu is similar to that reported for               

TmarAgu [55]. The specific activity was 10 u/mg 

protein/ lower than the reported value of 31 u/mg 

reported for TmarAgu measured using a different 

substrate no longer available.    DtuAgu was active on 

intact glucuronoxylan, with a specific activity of 

approximately 20% of that measured using xylan 

oligosaccharides.  This is the first report of thermostable 

α-glucuronidase activity on intact xylan.  Previous work 

by our group demonstrated the ability of DtuAgu to 

improve performance of fungal Trichoderma reesei 

enzymes in biomass conversion [42]. Here we 

demonstrate the ability of the DtuAgu to also 

significantly improve performance of bacterial xylanolytic 

enzymes in conversion of isolated xylan and pretreated 

biomass.   

Conclusions 

 DtuAgu has potential for improving the 

conversion and reducing the cost of biomass conversion 

into fermentable sugars, a major requirement for cost-

effective biofuel production.  The extent of improvement 

in xylose by DtuAgu cannot be accurately predicted 

because it depends strongly on the experimental 

conditions.  Large differences in xylose yield were seen 

between different sources of xylan hydrolyzed with the 

same enzyme cocktail, and large differences were also 

seen between the same substrate hydrolyzed with 

different xylanases.  Additional work is needed to 

evaluate and optimize enzyme cocktails for biomass 

conversion, possibly optimizing individual cocktails for 

each biomass source. 
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