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Abstract 

Telomeres are strings of DNA that are not themselves genes but that extend every chromosome beyond its 

last gene.  Terminal telomeres are sacrificed during every mitotic event in human cells (“telomere attrition”), 

preserving the functional genome despite the “end replication problem.”  However, the “telomeric theory of 

biological aging” suggests that when an individual cell has reproduced itself a sufficient number of times (the 

“Hayflick limit”), some the its telomeres have become critically shortened (“telomeric crisis”) and cannot 

completely “cap off” a chromosome, and any further attempts to replicate such a chromosome would produce 

damaged DNA and a dysfunctional cell (“cellular aging”).  As cells enter telomeric crisis, they usually initiate 

intracellular signaling cascades that arrest DNA replication and mitotic activity, converting biologically active 

cells into inactive cells (“cellular senescence”).  The progressive accumulation of senescent cells impairs the 

healthy functioning of tissues and produces “biological aging.”   

 

Oxidative stress damages telomeres and accelerates telomere attrition and biological aging.  Premature 

biological aging is associated with degenerative diseases and diminished quality of life.  Reducing the level of 

systemic oxidative stress can ease the oxidative drive toward cellular senescence and premature biological 

aging.  Increased intakes of antioxidant-rich foods and specific antioxidant nutrients (such as fruits and 

vegetables, -lipoic acid, astaxanthin, eicosapentaenoic acid, docosahexaenoic acid, trans-resveratrol, N-

acetylcysteine, methylsulfonylmethane, lutein, vitamin C, vitamin D, vitamin E, and γ-tocotrienol) may 

decrease cellular and systemic oxidative stress and decelerate biological aging.   
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Introduction 

Telomeres, Senescence and Biological Aging 

 Human telomeres are strings of nucleotides 

located on the tips of chromosomes that repeat the 

“nonsense” sequence, TTAGGG, thousands of times.1  

Instead of providing genetic information, telomeres 

protect chromosomal integrity.  The last telomeres on 

the 3’ end of a chromosome combine with a set of 

proteins (the shelterin complex) to form loop-like 

structures that prevent 1) the “loose” ends of 

chromosomal DNA strings from being mistakenly 

identified by the DNA repair machinery as broken DNA 

strands that require repairing, and 2) subsequent well-

intentioned but misguided repair attempts that could 

produce harmful mutations.1-6   

 When a cell is replicating its DNA prior to 

undergoing mitosis, the DNA polymerase-containing 

replication complex cannot fully replicate the 3’ end of 

linear duplex DNA during DNA replication (the “end-

replication problem”).  Any genetic nformation at that 

end of the molecule would be replicated in a truncated, 

potentially dysfunctional form.7  Telomeres  protect 

terminal genes from truncation by serving as expendable 

terminal nucleotide sequences.7  However, the terminal 

telomere/shelterin complex prevents the required 

relationship between DNA polymerase and the DNA 

strand, and must be excised before DNA replication can 

occur.  Because the excised telomeric DNA is not 

replaced, the number of telomeric TTAGGG repeats on 

the end of each chromosome decreases with each round 

of DNA replication (telomere attrition).1,2,4,6,8  However, 

no genetic information is lost, and the shelterin complex 

and remaining terminal telomeres reassociate, resuming 

their protective role.1-7   

 A consequence of this process is that the 

average lengths of telomeres in most populations of 

reproducing human cells (such as the fibroblasts that 

form a scar, or the circulating leukocytes that fight 

infections) decline steadily with increasing chronological 

age, reflecting increasing numbers of previous 

replication cycles.9-17  This phenomenon has been 

observed in human peripheral blood mononuclear 

cells,16,18-21 leukocytes,9,11,13,19,22-54 lymphocytes,12,55-58 

bone marrow-derived hematopoietic stem cells,59,60 oral 

cavity buccal cells,16 skeletal muscle cells,9,24 skin 

epidermal cells,15,61 skin keratinocytes,9,24 fibroblasts,62 

vascular endothelial cells,19,63-65 adipocytes,9,24 pituitary 

neurons,66 and cells in the colon.41,66,67  The rates of 

telomere shortening in different tissues appear to remain 

highly correlated and, on average, approximately linear 

throughout adult life.9-17  However, tissues with more 

rapid cellular turnover (such as intestinal epithelial cells) 

exhibit more rapid rates of telomere shortening.9,68,69   

 

 At any given time, within a cell that is not 

terminally differentiated, the length of the remaining 

telomere string reflects the number of previous 

replication cycles the cell has experienced and limits the 

number of future cycles of DNA replication (and 

therefore the number of mitotic cycles and cell divisions) 

that remain available to the cell (the “Hayflick 

limit”).4,7,8,62,70  Thus, telomeres act as a molecular 

clock (“replicometer”) tracking the reproductive history 

of a cell.8  The progressive telomere shortening that 

occurs during repeated cycles of cell division moves a 

cell toward its Hayflick limit (replicative aging).8  After a 

critical cell type-specific number of telomeric repeats 

have been lost, the telomere/shelterin complex 

destabilizes, sheds shelterin (telomere uncapping), and 

can no longer prevent the detection of a (false) DNA 

break and the initiation of a DNA damage response 

(DDRb).8,71,72   

 

 The DDR begins with the detection of DNA 

strand breaks and triggers a DNA replication-arresting 

cascade.71-75  Activation of the p16INK4A tumor 

suppressor protein inhibits the D-type cyclin-dependent 

kinases, CDK4 and CDK6, that deactivate via 

phosphorylation the retinoblastoma tumor suppressor 

protein (Rb); Rb deactivation releases cells from arrest 

in the G1 phase of the cell cycle while p16INK4A-initiated 

inhibition of Rb deactivation arrests DNA replication and 

mitosis.68,73-79  Consequently, initiation of the p16INK4A/
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Rb cascade by the DDR prevents both potentially mutant 

DNA replication and the reproduction of a cell potentially 

containing mutant DNA.68,73-79  Consistent with the 

hypothesis that there is an association between 

replicative aging and biological aging, the expression of 

p16INK4a (and, therefore, the likelihood of irreversible 

cessation of replication; replicative senescence) 

increases in human lymphocytes with increasing 

chronological age.58   

 The DDR also activates the tumor suppressor 

protein 53 (p53) – p21 (CDK-inhibitor 1A; CDKN1A) 

pathway to cell cycle arrest.80  Activated p53 activates 

p21, triggering a cascade, sequentially involving the 

growth arrest and DNA-damage inducible protein 45 

(GADD45), mitogen-activated protein kinase 14 

(MAPK14), growth factor receptor-bound protein 2 

(GRB2), transforming growth factor-β receptor 2 

(TGFBR2), steroid receptor coactivator (Src), the 

disabled-2 (Dab2) intracellular adaptor protein, and 

transforming growth factor-β (TGF-β), that induces a 

positive feedback loop of mitochondrial dysfunction, 

increased oxidative DNA damage, and inability to 

perform replicative functions that drives the cell toward 

replicative senescence.4,7,73,74,80-82   

 Replicative senescence can be delayed.  

Replicating cells express telomerase, a constitutive 

ribonucleoprotein complex containing at least 6 and as 

many as 16 distinct proteins that is present at low 

activity in all cells that are not terminally 

differentiated.22,83  The RNA component of telomerase 

(TERC) serves as a template for the “replacement” of 

telomeric DNA, while the catalytic subunit of telomerase 

(TERT) acts as a cellular reverse transcriptase, 

elongating replication-shortened telomeres by adding 5’-

TTAGGG-3’ repeats.7,22,84-86  Upregulation of telomerase 

activity is vital to the prevention, postponement or 

elimination of the continued shortening and inevitable 

replication-arresting uncapping of key telomeres 

(telomere crisis).4,7,22,84-88  All healthy replicating human 

cells eventually experience a terminal telomere crisis, 

chromosomal instability, and apoptotic death.87  The 

interplay between telomere attrition, telomerase 

upregulation, and the DDR, and the intensity and 

duration of their initiating stimuli, determines the 

eventual fate of the cell – resumed replication, 

replicative senescence, or apoptosis.   

 

Telomerase activity and telomere lengthening are 

directly correlated with the expression of TERT.88  

Conversely, humans with mutated (inactive) TERT have 

proliferating cells with very short telomeres that, even 

during childhood, have average lengths similar to those 

of unmutated telomeres of adults years older;22,89,90 

these cells exhibit significantly reduced replicative 

capacities, with fewer cell divisions until replicative 

senescence.91   

 The activation of telomerase may be thought of 

as a mechanism to slow down the rate of progressive 

genomic instability that results from dysfunctional 

telomeres and the consequences of that instability.92  

For example, mice with epidermal stem cells lacking 

telomerase and exhibiting very short telomeres 

experienced delayed wound healing, stunted hair 

growth, epidermal thinning, dwarfism, stunting of 

individual internal organs, and reduced longevity,93 

which were reversed upon restoration of telomerase 

activity.94  Consistent with these data, aging murine 

neuronal stem cells, in which the expression of 

telomerase is downregulated and telomeres are critically 

short and dysfunctional, produce daughter neurons that 

are fewer in number and unable to develop fully mature 

neurite arbors (differentiation failure).95   

  The limited life span of many human cell types 

that are not capable of replicating themselves results 

from their inability to express telomerase (because they 

are fully differentiated and not dividing) and maintain 

telomeres at sufficient lengths to suppress DDRs.96  On 

the other hand, there is evidence that initially longer 

telomeres decrease in length most rapidly18,97,98 and 

that a “telomere trimming” mechanism releases 

telomeric DNA from elongated telomeric chains despite 

the presence of active telomerase, counteracting 

“excessive” telomere lengthening and possibly setting 

upper limits on maximum telomere length and the 
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number of future replication cycles until senescence will 

be reached.99-102   

 Organismal longevity may reflect the integration 

of the replicative histories of all of the cell populations of 

the organism.  Because the rates of telomere shortening 

in different tissues are highly correlated throughout 

adult life,9,10,15,17 the mean lengths of telomeres in 

easily obtained peripheral blood mononuclear cells 

(PBMC) or circulating leukocytes (mean leukocyte 

telomere length; LTL) may serve as biomarkers of 

remaining biological lifespan in humans.  For example, 

among a subset of the participants in the prospective 

Cardiovascular Health Study, those with the shortest age

- and sex-adjusted LTL at the beginning of the study 

were 60% less likely to be alive years later (95% 

confidence interval:  22%, 112%).32  In contrast, mice 

that have been genetically engineered to overexpress 

telomerase experienced greater overall health and 

extended life span.103   

 The available observational and experimental 

data support the conclusion that cellular replicative 

capacity decreases, senescent cells accumulate, and 

functional senescence increases as humans grow 

older.68  For example, when freshly-harvested human 

vascular smooth muscle cells and endothelial cells were 

studied, the numbers of cell divisions until permanent 

mitotic arrest and cellular senescence were inversely 

correlated with donor age.104  In another study, 

compared to findings in men and women aged 20 to 39 

years, a loss of replicative capacity was detected in the 

skin of men and women over 68 years old.105  In 

contrast, pharmacological elimination of p16INK4A-positive 

cells in mice delayed the appearance of typical “age-

associated” degenerative changes, including reduction in 

DNA synthesis within skeletal muscle, loss of skeletal 

muscle diameter, decreased exercise ability, and 

increased numbers of apoptotic cells within the eyes.106  

Together, these findings suggest that cellular aging 

(biological aging) increases with chronological age and 

may be  a consequence of cumulative telomere attrition.   

 

 

Oxidative Stress and Replicative Senescence 

 The biological and physiologic processes 

associated with aging reflect the rate of whole-body free 

radical production,107-111 and an imbalance in the body’s 

oxidant and antioxidant status is an important etiologic 

factor for human degenerative diseases of aging.107-112  

Reproductively-senescent human cells in many tissues 

produce increased amounts of reactive oxygen species 

(ROS)113 and contain oxidatively modified proteins that 

disrupt pathways involved in the inflammatory response, 

carbohydrate metabolism, nucleic acid metabolism, 

amino acid metabolism, protein synthesis, free radical 

scavenging, cell migration, and apoptotic cell death.114-

116  In addition, ROS contribute to the induction of 

replicative senescence through the creation of foci of 

oxidatively-modified DNA, including at telomeres. 117   

 The telomere strand of TTAGGG repeats is 

particularly sensitive to oxidative stress because these 

strands are rich in guanine residues that are readily 

oxidatively modified to 8-oxyguanosine (8-OHdG; 8-oxo-

dG).118  8-OHdG results in mostly G→T transverse 

mutations that can accelerate telomere shortening by 

reducing the protective binding of shelterin proteins to 

the altered telomere.61,119  In addition, adjacent 

oxidatively-modified telomeres form clusters of oxidized 

DNA lesions that are less likely to be repaired 

successfully.120,121  In a case-control study, telomere 

lengths in aortic endothelial cells, vascular smooth 

muscle cells, lymphocytes, and keratinocytes were 

inversely correlated with intracellular 8-OHdG content.16  

Cellular senescence also can result from telomere-

independent oxidative chromosomal disruption, including 

DNA damage from radiation, oxidants, alkylating agents, 

and drugs that generate double-strand DNA breaks.122   

 Experiments with human dermal 

fibroblasts,80,123-128 human adipocytes,129 human 

vascular smooth muscle cells,130-132 human arterial 

endothelial cells,113 human umbilical vein endothelial 

cells,132 and human retinal pigment epithelial cells133 

have provided evidence that oxidatively damaged DNA is 

a characteristic associated with accelerated telomere 

attrition and premature replicative senescence.  In 
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response to continuous exposure to sublethal 

concentrations of hydrogen peroxide (H2O2), human 

cells increase superoxide production, experience 

elevated intracellular oxidative stress, and exhibit 

oxidative telomere shortening that accelerates with each 

subsequent replicative cycle.  As shown in experiments 

with cultured human fibroblasts and endothelial cells 

exposed to H2O2, loss of telomerase activity results from 

export of the oxidatively-damaged reverse transcriptase 

subunit of telomerase out of the nucleus and into the 

cytosol through nuclear pores, preventing telomere 

length maintenance within the nucleus during replicative 

cycles.113,134,135  In addition, shortened telomeres are 

more sensitive to oxidizing conditions.130,136  These 

responses are accompanied by reductions in the 

numbers of cell divisions until replicative capacity is lost 

and cellular senescence ensues.   

 Exposing human vascular smooth muscle cells to 

superoxide anion-promoting angiotensin II130,131 or 

exposing cultured human dermal fibroblasts to 

ultraviolet-A irradiation128 resulted in increased 

generation of ROS and oxidative DNA damage that were 

accompanied by accelerated telomere attrition and 

premature replicative senescence.  In cross-sectional48 

and case-control80 studies, age-adjusted LTL were 

inversely correlated with the plasma concentration of 

total oxidizing compounds48 and with an established 

biomarker of the level of systemic oxidative stress, the 

plasma concentration ratio of F2-isoprostane lipid 

peroxidation products to the antioxidant, ascorbic 

acid.80,137  Among a cohort of healthy premenopausal 

women, those with the greatest degree of chronic 

oxidative stress (reflected in the ratio of total 

isoprostanes to vitamin E within circulating leukocytes) 

had age-adjusted LTL that were shorter by an amount 

equivalent to an additional decade of biological aging.138  

Consistent with the hypothesis that oxidative stress 

accelerates telomere attrition, in a cross-sectional study 

of men aged 79 to 98 years, age-adjusted LTL was 

directly correlated with total circulating antioxidant 

capacity, suggesting that reducing systemic oxidative 

stress contributes to the preservation of telomere 

length.58   

 Environmental sources of oxidative stress also 

induce premature senescence.  Pesticides such as DDT 

(dichlorodiphenyltrichloroethane; 1,1,-trichloro-2,2-bis-

chlorophenylethane) stimulate lipid peroxidation, 

increase free radical generation, accelerate the 

formation of 8-OHdG, and reduce the length of 

telomeres in buccal cells.139-141  Humans exposed to 

large amounts of vehicular emissions exhibit increased 

systemic oxidative stress142-144 that accelerates telomere 

attrition,113,134 accelerating cellular biological aging26 

and organismal aging.145  Vehicular emissions have been 

found to be highly tissue-oxidizing in several case-

control studies142-144 and age-adjusted LTL have been 

reported to  be inversely correlated with the degree of 

exposure to vehicular emissions in a cross-sectional 

study in Milan, Italy,146 and in the prospective Veterans 

Affairs Normative Aging Study.147   

 Cigarette smoke contains many oxidizing 

chemicals, including nitric oxide, nitrogen disulfide, nitric 

and nitrous oxide esters, and the superoxide-generating 

semiquinone radical.148  Cigarette smoke produces 

systemic oxidative stress, depleting ascorbate, -

tocopherol, β-carotene, and glutathione reserves and 

stimulating the production of tissue-degenerating114 and 

DNA strand-breaking148 lipid peroxides, carbonylated 

proteins, and oxidized tyrosine residues.149  Human 

fibroblasts express many proteins that are sensitive to 

oxidative stress115 and upon reaching senescence, 

fibroblasts contain oxidatively modified proteins that 

disrupt pathways involved in the inflammatory response, 

carbohydrate metabolism, nucleic acid metabolism, 

amino acid metabolism, protein synthesis, amino acid 

metabolism, free radical scavenging, cell migration, and 

apoptotic cell death.114  By increasing the oxidative 

modification of cellular proteins, cigarette smoking 

accelerates the biological aging of human tissues with 

probable negative impact on maximum chronological 

age.   

 Cigarette smoking also accelerates telomere 

attrition.  In a cross-sectional study, age-adjusted LTL 

was inversely correlated with the number of cigarettes 

smoked lifetime, while DNA damage and lymphocyte 
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p16INK4a expression were directly correlated with the 

number of cigarettes smoked lifetime and inversely 

correlated with age-adjusted LTL.58  Cigarette smoking 

was associated with significantly accelerated rates of 

telomere attrition in the prospective Prevention of Renal 

and Vascular End-stage Disease study,52 the cross-

sectional Health, Aging and Body Composition27 and 

Prostate, Lung, Colorectal, and Ovarian Cancer 

Screening Trial21 studies, a case-control study conducted 

in Poland,39 a cross-sectional study nested within the 

prospective Helsinki Businessmen Study150 and case-

control studies nested within the prospective all-male 

Health Professionals Follow-up Study and all-female 

Nurses’ Health Study.151  In addition, at the end of a 12-

year prospective observational study, subjects who had 

quit smoking during the study exhibited significantly less 

continuing loss of telomere length than was experienced 

by continuing smokers.47   

 Cigarette-induced cellular senescence may be 

sufficiently severe to override the processes of 

replicative senescence.  For example, in a study of 

arterial endothelial cells harvested from smoking and 

nonsmoking patients undergoing coronary artery bypass 

graft surgery, even though cells harvested from smokers 

exhibited increased production of 4-hydroxynonenal 

(HNE, a product of lipid peroxidation), impaired 

resistance to H2O2-induced oxidation of cellular contents, 

and increased expression of p53, these cells had 

experienced less telomere attrition prior to surgical 

harvest (possible reflecting the younger chronological 

age of the smoking patients at the time of life-saving 

surgery, which may have been preceded by fewer cell 

doublings).152   

Telomere Attrition and Cancer 

 Excessive telomere attrition triggers a response 

that induces the expression of proteins that block the 

cell cycle and limits the replicative potential of 

cells.4,7,8,71,73,74,80-82  In so doing, telomere attrition may 

protect against carcinogenesis by preventing the 

proliferation of cancerous cells.  Observations of 

telomere shortening, genomic instability, and 

upregulated telomerase expression in many cancer 

tissues compared to adjacent normal tissue suggest that 

survival through a telomere crisis is a widespread crucial 

early event in malignant transformation.153  Cells that 

escape crisis upregulate telomerase expression, 

reversing telomere loss,62,154 or express telomerase 

variants that stabilize shortened telomeres.55,155-157  

Telomere stabilization at adequate but suboptimal levels 

can continue through an indefinite number of additional 

replication cycles, protecting genetically damaged DNA 

from normal cell senescence or apoptosis and allowing 

immortalized but damaged DNA to persist.158  

Alternatively, spontaneously immortalized cells that do 

not express telomerase (e.g., chromosomally stable 

microsatellite stable rectal cancer cells159) can maintain 

telomeres beyond “crisis” length through the telomerase

-independent process of “alternative lengthening of 

telomeres” (ALT) during which new telomeric DNA is 

synthesized from a DNA template.158-162   

 Nonetheless, the telomeres in circulating 

leukocytes and in mixtures of peripheral blood 

mononuclear cells are shorter in humans with many 

types of cancers,163 including gastrointestinal cancers, 

pancreatic cancer, bladder cancer, esophageal cancer, 

ovarian cancer, and lung cancer.151,158,164-170  

Premalignant lesions and tumors in which telomere 

lengths in cancer cells have been reported to be 

shortened even in the presence of active telomerase 

within the cancer cells include glioblastoma 

multiforme,171 oral cancers,172 and a variety of 

gastrointestinal tract cancers,39,158 including esophageal 

squamous dysplasia and squamous cell carcinoma, 

Barrett’s esophagus and esophageal adenocarcinoma, 

atrophic gastritis and gastric adenocarcinoma, pancreatic 

intraepithelial neoplasia and pancreatic adenocarcinoma 

and intraductal papillary mucinous neoplasm, and 

adenomatous polyp and colorectal adenocarcinoma.  

Telomere length in tumor cells appears to shorten early 

in the development of some cancers (e.g., low grade 

astrocytomas,156 colorectal cancer,173 oral cancers,173 

cervical cancer,173 prostate cancer,174 esophageal 

squamous cell carcinoma158,173) and the observation 

that telomere lengths in normal human esophageal158 

and mammary gland175 epithelial cells adjacent to 
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cancerous lesions are shorter than in normal epithelial 

cells from individuals who do not have cancerous lesions 

suggests that telomere length stabilization after a period 

of accelerated telomere attrition is an early initiating 

event in these cancers.   

 The telomeres in circulating leukocytes and in 

mixtures of PBMC are shorter in the presence of many 

types of premalignant lesions and human cancers163 and 

shortened age-adjusted LTL may serve as a biomarker 

of increased predisposition to carcinogenesis.158,163,164  

Although intralesional data are not available, age-

adjusted LTL have been reported to be significantly 

shorter in individuals with oral premalignant lesions than 

in unaffected adults, and significantly shorter in patients 

with oral squamous cell carcinoma than in patients with 

premalignant lesions, and the risks of developing either 

lesions increased as age-adjusted LTL decreased.176  

Similar relationships have been reported for age-

adjusted LTL and Barrett’s esophagus and age-adjusted 

LTL and esophageal adenocarcinoma.177  Consistent 

with the hypothesis that risk for cancer and age-

adjusted LTL are inversely correlated, the combined 

results obtained from 47,102 Danish men and women in 

the 20-year prospective Copenhagen City Heart and 

Copenhagen General Population Studies indicated that 

survival after any cancer diagnosis was directly 

correlated with age-adjusted LTL.45   

 However, short LTL are not consistently 

associated with all cancers and accelerated telomere 

attrition may not be a general characteristic of 

precarcinogenesis.  For example, in case-control studies 

nested within the all-male Physicians’ Health Study,178 

the all-female Women’s Health Study179 and the male 

and female Norfolk cohort of the European Prospective 

Investigation into Cancer and nutrition study,180 age-

adjusted LTL were not correlated with risk for 

developing colorectal cancer.  In a prospective study of 

prostate cancer risk, the risk of developing prostate 

cancer was not associated with short LTL;40 in a New 

England case-control study, the risk for developing 

ovarian cancer was not correlated with age-adjusted 

LTL;43 and in a case-control study nested within the 

Prostate, Lung, Colorectal, and Ovarian Cancer 

Screening Trial, the risk for developing glioma was not 

correlated with age-adjusted average buccal cell 

telomere length.15  In addition, premature telomere 

shortening is not a feature of noncancerous colonocytes 

adjacent to colon carcinoma cells with shortened 

telomeres66,181,182 or of noncancerous buccal mucosal 

cells adjacent to cancerous buccal mucosal cells with 

shortened telomeres.174  Furthermore, short age-

adjusted LTL have been associated with reduced risk for 

developing cutaneous melanoma41 and short age-

adjusted average telomere lengths in peripheral blood 

mononuclear cells  have been associated with reduced 

risk for developing breast cancer.20   

Telomere Attrition and Age-Associated Conditions 

 Replicative and cellular senescence are 

characteristic of human degenerative diseases.48,183  For 

example, cardiovascular diseases that involve endothelial 

disruption or injury (including atherosclerosis,63-

65,69,184,185 coronary artery disease,51,186 arterial 

trauma,187 and abdominal aortic aneurysm17) are 

associated with accelerated telomere shortening in 

vascular endothelial cells, suggesting that the 

acceleration of telomere shortening may be a 

senescence-initiating response to endothelial injury.  In 

addition, vascular smooth muscle cells harvested from 

human atherosclerotic plaques exhibit significantly 

shorter telomeres and significantly more oxidatively-

damaged DNA than similar cells harvested from healthy 

tissue.188   

 Accelerated systemic telomere attrition is an 

attribute of most forms of cardiovascular disease.  

Significantly shorter age-adjusted LTL have been 

reported in individuals with coronary heart disease,37 the 

odds of developing symptomatic peripheral arterial 

disease were inversely correlated with the age-adjusted 

LTL,38,90 with a 15% increase in risk for every 10% 

decrease from the population mean in the age-adjusted 

LTL,90 the maximum ultrasonically-measured thickness 

of the internal carotid artery wall (a biomarker for the 

extent of vascular disease189) was inversely correlated 

with the age-adjusted LTL,26 and the odds of 

experiencing a stroke or of developing hypertension 
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were significantly increased among adults with age-

adjusted LTL shorter than the population median.34,51   

 When the data from a pair of 19-year 

prospective studies of 19,838 Danes (the Copenhagen 

City Heart Study; the Copenhagen General Population 

Study) were combined, it was calculated that for every 

1000 base pair decrease in age-adjusted average 

leukocyte telomere length, the risk for experiencing a 

myocardial infarction increased 10% (95% CI:  1%, 

19%), the risk for developing ischemic heart disease 

increased 6% (95% CI:  0%. 11%), and the risk for 

suffering premature death increased 9% (95% CI:  5%, 

13%).190  Among 203 men in Salamanca, Spain, with 

symptomatic acute coronary syndrome and aged 50 to 

75 years, the likelihood of survival was significantly 

lower for patients with age-adjusted LTL that were 

shorter than the median length for this cohort of 

men.191  A study of patients referred for coronary 

angiography found a direct correlation between age-

adjusted average peripheral blood mononuclear cell 

telomere length and years of survival post-

angiography.192   

 Accelerated telomere attrition also may 

contribute to the etiology of osteoarthritis.  Men and 

women in the TwinsUK Adult Twin Registry with hand 

osteoarthritis had significantly shorter leukocyte 

telomere lengths.193  In addition, senescent 

chondrocytes have been observed within osteoarthritic 

articular cartilage lesions.194  In articular cartilage 

tissues harvested from both morphologically healthy and 

osteoarthritic human femoral heads, the number of short 

telomeres (consisting of less than 1500 base pairs) per 

unit surface area was directly correlated with the degree 

of apparent cartilage degeneration.195  Human articular 

chondrocytes are sensitive to oxidative stress and 

respond to H2O2 with increased production of ROS and 

increased cellular senescence, reflected in shortening of 

telomeres, reduced replicative capacity, and suppressed 

production and increased degradation of extracellular 

matrix macromolecules.196   

 

 Glucoregulation also is affected by telomere 

attrition.  In the 5.5-year prospective observational 

Strong Heart Family Study of 2328 initially 

normoglycemic male and female Native Americans, the 

multivariate-adjusted hazard ratio for the development 

of type 2 diabetes was doubled for those individuals with 

the shortest age-adjusted LTL.197  Consistent with these 

data, type 2 diabetes was associated with significantly 

shorter age-adjusted LTL in a cross-sectional study of 

Caucasian, South Asian, and Afro-Carribean men and 

women.53  A meta-analysis of 9 case-control studies 

concluded that the risk for developing type 2 diabetes is 

12% greater (95% CI:  0%, 25%) when the age-

adjusted LTL is less than the average length among 

adults without impaired glucose homeostasis.198   

However, it is not clear whether telomere shortening 

disrupts glucoregulation or loss of glucoregulation 

produces an increase in systemic oxidative stress that 

disrupts telomere length homeostasis.199   

 Human lung function is correlated with age-

adjusted LTL.  The results of a meta-analysis of the 

results of previously published case-control and cross-

sectional studies indicated that the odds of developing 

chronic obstructive pulmonary disease (COPD) or 

asthma were inversely correlated with the age-adjusted 

LTL.200  In addition, both forced vital capacity and 

forced expiratory volume in one second were directly 

correlated with the age-adjusted LTL.200   

 Cognitive abilities may be reflected in age-

adjusted LTL.  For example, among a group of men and 

women aged 33 to 79 years, performance on an 

intelligence test was correlated with age-adjusted LTL.35  

In other studies, men 65 years old and older living in 

Hong Kong201 and women 19 to 78 years old living in 

the United Kingdom202 exhibited memory recall speed 

and accuracy that were correlated with age-adjusted 

LTL.  Furthermore, among a group of men and women 

aged 64 to 75 years and exhibiting no signs of dementia, 

the degrees of subcortical cerebral atrophy (a correlate 

of cognitive decline) and of white matter hyperintensities 

(a correlate of cerebral infarcts) were each inversely 

correlated with the age-adjusted LTL.203   
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Diet, Nutritional Antioxidants, Telomere Attrition, 

and Replicative Senescence 

 Because exposure to ROS-induced oxidative 

stress accelerates telomere shortening,123,124 and 

telomere shortening is associated with accelerated 

biological aging and premature replicative 

senescence,123,124,204-206 reducing the generation of 

ROS and increasing antioxidant availability should 

provide potent mechanisms to retard telomere attrition, 

decelerate cellular aging, and delay the onset of 

replicative senescence.61,206,207  For example, in a short 

nonblinded, randomized trial, the effects of 3 diets on 

telomere attrition were examined in men and women 

over 65 years old.208  Serum drawn from the subjects 

while consuming the diet with the lowest content of 

saturated fatty acids was associated with the slowest 

rate of telomere attrition when the serum was added to 

the culture medium of human umbilical vein endothelial 

cells.  This finding is consistent with results from several 

cross-sectional studies in which the age-adjusted LTL 

was inversely correlated with habitual daily intake of 

saturated fatty acids,48,49,209,210 and a small 5-year 

prospective intervention in which a reduction in 

saturated fatty acid intake was associated with arrest of 

age-associated telomere shortening.211   

 There also is evidence that dietary enhancement 

of systemic antioxidant capacity can beneficially 

influence cellular and biological aging.  In retrospective 

observational studies, age-adjusted LTL was significantly 

shortened among those subjects with the smallest 

routine daily intakes of fruits39,48,49,209 and was directly 

correlated with total daily fruit and vegetable 

intakes.21,48,49,209  In the cross-sectional Sister Study, 

the mean multivariate-adjusted leukocyte telomere 

length was directly correlated with the daily 

consumption of a multivitamin supplement and, 

individually, with the daily intakes from foods of vitamin 

A, vitamin C, vitamin E, and folate.212  In agreement 

with the results of the Sister Study,212 a growing body of 

scientific evidence also supports the hypothesis that the 

addition of supplemental nutrients can contribute to a 

reduction in the rates of cellular and biological aging.   

-Lipoic Acid 

 -Lipoic acid (5-(1,2-dithiolan-3-yl)-pentanoic 

acid) is a naturally-occuring component of human 

mitochondria that is able to penetrate both cell 

membranes and aqueous compartments, allowing it to 

act as a multi-purpose nonenzymatic antioxidant that 

protects mitochondria and surrounding cellular elements 

from oxidation by the free radicals produced by 

mitochondria during oxidative metabolism.213-225  The 

sulfhydryl groups on the -lipoic acid molecule provide 

strong antioxidant potency, directly exchanging free 

protons for free radical electrons in lipophillic 

environments (e.g., biological membranes) and 

exchanging free protons with hydroxyl ions and water 

during the deactivating reduction of free radical 

electrons in aqueous environments (e.g., biological 

fluids).214   

 In addition to reducing ROS, -lipoic acid can 

recycle (reduce) other nonenzymatic antioxidants after 

they have become oxidized, prompting the descriptor, 

“antioxidant of antioxidants.”226-228  -Lipoic acid also 

directly stimulates increased activities of a set of 

endogenous antioxidant enzymes, including superoxide 

dismutase (SOD), catalase, glutathione peroxidase, and 

heme oxygenase-1 (HO-1).216-220,223-229   

 -Lipoic acid can delay the onset of cellular 

senescence by downregulating the phosphorylation of 

Rb in cells with oxidatively damaged DNA, arresting cell 

cycle progression and redirecting the cells toward 

apoptotic death.230  In addition, the initiation of 

oxidative damage to DNA can be prevented by -lipoic 

acid, which has been shown to inhibit the formation of 8

-OHdG by the ,β-unsaturated aldehydes created during 

the free radical-induced oxidation of the membrane-

associated ω-3 polyunsaturated fatty acid, 

docosahexaenoic acid (DHA).231   

Astaxanthin   

 Astaxanthin is a red carotenoid pigment found in 

salmon, crabs, and shrimp.232,233  Following the 

consumption of astaxanthin by adults, peak plasma 
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astaxanthin concentrations of 10-8 M to 10-6 M have 

been observed; these peak concentrations were 

proportional to the amount of astaxanthin that was 

ingested.234-238  Absorbed astaxanthin is taken up by 

most tissues of the body, including the kidneys, heart, 

liver, skin, skeletal muscle, eyes, lungs, brain, brain 

stem, and erythrocytes.239-245   

 The structure of astaxanthin confers extremely 

potent antioxidant powers.  Its conjugated polyene 

structure allows astaxanthin to intercalate within the 

lipid bilayers of biological membranes246 while its 

terminal hydroxylated ring structures remain exposed on 

the inner and outer surfaces of the membranes,246,247 

further increasing the number of free radical electrons 

that can be quenched by each molecule of 

astaxanthin247 and preventing oxidative degradation of 

membrane structural integrity.248-250  The spontaneous 

reactions of astaxanthin with oxidizing ROS240,246,251-269 

allow astaxanthin to exhibit free radical quenching 

potency that is double that of β-carotene,246,255,270,271 2 

to 5 times that of DHA or eicosapentaenoic acid 

(EPA),272 about 100-fold greater than that of -

tocopherol,255-257 and approximately 6000 times the 

potency of ascorbic acid.257  Astaxanthin also inhibits 

ROS formation by inhibiting spontaneous lipid 

peroxidation,248-250,259,273-275 peroxyl radical-induced 

lipid peroxidation,259,276 iron-induced oxidation of 

membrane phospholipids,277-280 and the oxidation of low

-density lipoprotein (LDL) particles.281,282  Furthermore, 

exposure to astaxanthin increased the activities of the 

antioxidant enzymes, SOD, catalase, glutathione 

peroxidase, and glutathione reductase, and the 

intracellular concentration of the intracellular 

antioxidant, reduced glutathione, in human umbilical 

vein endothelial cells,280,283 human neuroblastoma 

cells,275 and murine retinal ganglion cells266   

 Absorbed astaxanthin is an active antioxidant in 

humans.  Adolescent male soccer players exhibited 

significantly increased serum antioxidant capacity after 

90 days of daily dietary supplementation with 4 mg of 

astaxanthin.282  After supplementing their diets for 2 

weeks with 6 mg of astaxanthin daily, men and women 

experienced a significant increase in the superoxide 

anion scavenging activity in the visual aqueous 

humor.284  Supplementation with 20 mg of astaxanthin 

for 3 weeks238 or 12 weeks285 produced significant 

reductions in the plasma concentrations of the lipid 

peroxidation products, malondialdehyde (MDA) and F2-

isoprostane, reflecting reductions in whole-body cellular 

lipid peroxidation,286,287 and significant increases in 

measured total circulating antoxidant capacity in 2 

groups of overweight and obese men and women.  

Similarly, after 8 weeks of consuming 2 mg of 

astaxanthin daily, a group of healthy postmenopausal 

women exhibited a significantly greater increase in total 

plasma antioxidant status than was elicited by placebo, 

as well as a significantly greater reduction in the plasma 

concentration of thiobarbituric acid reactive substances 

(TBARS; mixed reaction products of nonenzymatic 

oxidative lipid peroxidation).283,288  Another group of 

healthy postmenopausal women exhibited a significant 

increase in total circulating antioxidant activity after 

consuming 12 mg of astaxanthin daily for 8 weeks.289   

 Together these data indicate that astaxanthin 

reduces the level of oxidative stress throughout the 

body.  Consistent with the hypothesis that oxidative 

stress increases the oxidative modification of DNA, 

shortens telomeres and promotes cellular senescence, 

while a reduction in systemic oxidative stress attenuates 

or reverses these responses, geriatric dogs fed 20 mg of 

astaxanthin daily for 16 weeks290 and healthy young 

women who consumed 2 mg of astaxanthin daily for 8 

weeks291 experienced significant decreases in whole-

body DNA oxidation.    

ω-3 Fatty Acids 

 EPA (20:5ω3) and DHA (22:6ω3) are very long-

chain polyunsaturated fatty acids that are dietary 

essentials because -linolenic acid (18:3ω3), the 

immediate precursor of EPA, cannot be synthesized de 

novo in humans and must be consumed in the diet.292-

294  However, although it is the only known function of 

-linolenic acid,295-297 the conversion of -linolenic acid to 

EPA is inefficient298-302 and may not be adequate to 

fulfill physiological requirements for EPA and DHA.303  A 
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small, biologically insignificant amount of DHA can be 

produced in humans by sequential elongation and 

desaturation of EPA.292-294   

 EPA and DHA contribute to telomere 

maintenance.  In a 5-year prospective study of 

ambulatory outpatients with stable coronary artery 

disease, the multivariate-adjusted rate of leukocyte 

telomere shortening was inversely correlated with the 

combined whole blood concentrations of EPA and 

DHA.304  In a double-blind, randomized placebo-

controlled trial, daily supplementation with 180 mg of 

EPA plus 120 mg of DHA for 3 months reduced serum 8-

OHdG concentrations and increased total circulating 

antioxidant capacity in cigarette smokers.305  In another 

double-blind, randomized placebo-controlled trial, during 

which subjects consumed 2085 mg of supplemental EPA 

plus 348 mg of DHA daily for 4 months, lymphocyte 

telomere length was directly correlated with the increase 

in the combined plasma concentrations of EPA and 

DHA.306  DHA may be the telomerically-relevant 

nutrient; among men and women over 65 years old, 

increased erythrocyte DHA content accompanying 6 

months of increased DHA intake was inversely correlated 

with the rate of telomere shortening in whole blood.307   

 

trans-Resveratrol 

 trans-Resveratrol (trans-3,4’,5-

trihydroxystilbene) is a polyphenol produced by many 

plants, including raspberries, blueberries, grapeskins, 

peanuts, and certain pine trees.207,308-310  Adding trans-

resveratrol to the diet of laboratory animals or to the 

growth medium of cell cultures has been shown to 

support a number of physiologic systems,311 including 

fatty acid mobilization from adipose stores,312 energy 

metabolism in skeletal muscle313-315 and articular 

cartilage,316 reduction of oxidative damage and 

inflammation in metabolically active tissues,313,316-325 

and mitochondrial biogenesis with accelerated ATP 

regeneration and increased aerobic capacity, exercise 

tolerance, and endurance.326,327  Rats fed trans-

resveratrol at a rate of 20 mg to 50 mg per kg body 

weight (100 kg adult human equivalent daily intake:  30 

to 80 mg328) increased the survival of hypoxia-

challenged cardiac muscle,329,330 attenuated cigarette 

smoke-induced and cardiovascular disease-producing 

loss of compliance by the carotid arteries,331,332 

prevented experimentally-induced autoimmune 

myocarditis,333 stimulated the growth of new capillaries 

within the myocardium,334 and attenuated the 

expression of biomarkers of aging in the heart.335   

 

 Other components of the cardiovascular system 

also benefit from trans-resveratrol consumption.  Arterial 

endothelial cells harvested from rats exhibit attenuation 

of cigarette smoke-induced generation of ROS and 

secretion of the pro-inflammatory cytokines, interleukin-

6 (IL-6) and tumor necrosis factor- (TNF-), in the 

presence of 10-4 M trans-resveratrol.336  At a lower 

concentration (10-5 M), trans-resveratrol has attenuated 

oxidative DNA fragmentation and cellular death induced 

by TNF-, H2O2, and oxidized LDL in rat arterial 

endothelial cells via increased expression of glutathione 

peroxidase, catalase, and heme oxygenase-1 (HO-1).337   

 

 Evidence from cultured human lung epithelial 

cells,338 vascular endothelial cells339 and human 

platelets308,340-343 indicates that trans-resveratrol (10-5 

M) stimulates glutathione synthesis and reduces the 

generation of ROS.  Exposure of human arterial 

endothelial cells to trans-resveratrol (10-7 M) attenuates 

H2O2-induced endothelial cell adhesion to monocytes.344   

trans-Resveratrol (10-8 M) also inhibits superoxide 

production by human neutrophils345 and vascular 

endothelial cells,346 preventing ROS production by 

vascular smooth muscle cells.347  trans-Resveratrol 

crosses the blood-brain barrier348 and physiologic and 

near-physiologic concentrations of trans-resveratrol (10-7 

M to 10-5 M) inhibit the neuronal production of ROS.349-

352   

 

 These properties of trans-resveratrol combine to 

retard the rate of cellular senescence.  Human peritoneal 

mesothelial cells exposed to trans-resveratrol (0.5 x 10-6 
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M) experienced increased recruitment into cell cycle 

progression and replication, reduced telomere attrition, 

increased SOD activity, decreased oxidative damage to 

DNA with less formation of 8-OHdG, upregulation of 

DNA repair enzymes, and an increased number of cell 

divisions before becoming senescent.353   

 

N-acetylcysteine 

 N-acetylcysteine is an acetylated variant and 

precursor of the amino acid, L-cysteine, serves as a 

precursor to glutathione (an endogenous reducer of lipid 

peroxides283), and is associated with free radical 

scavenging activity that may be related to its sulfhydryl 

groups.354  Human trabecular meshwork cells grown in 

culture with a high concentration of oxidizing glycated 

albumin produced increased amounts of superoxide and 

total ROS and exhibited evidence of accelerated 

telomere attrition; these effects were attenuated when N

-acetylcysteine was added to the culture medium.355  

The addition of N-acetylcysteine to cultures of human 

lymphocytes exposed to irradiation356 and human 

astrocytoma cells infected with the human 

immunodeficiency virus357 has attenuated increases in 

ROS production and decreases in the ratio of reduced to 

oxidized glutathione while maintaining longer telomere 

lengths.  In addition, human arterial endothelial cells 

and human pluripotent stem cells respond to N-

acetylcysteine with reduced production of ROS, less 

oxidative modification of DNA, a decrease in the number 

of genomic aberrations, increased telomerase activity, 

prevention of cell doubling-associated telomere attrition, 

delayed upregulation of the DDR pathway, and 

increased replicative capacity.113,354,358,359  These 

responses are consistent with the conclusion that N-

acetylcysteine delays cellular aging.   

 

Methylsulfonylmethane 

 Methylsulfonylmethane (MSM) is an organic 

sulfur-containing compound that occurs naturally in a 

variety of fruits, vegetables, grains, and animals.360  The 

ingestion of MSM stimulates glutathione activity and 

reduces the lipid peroxidation caused by exercise.  Sport 

horses given supplemental MSM during a season of 

competition exhibited significant increases in the plasma 

concentration of reduced glutathione and in the plasma 

activities of glutathione peroxidase, glutathione 

reductase, and glutathione transferase, and a significant 

decrease in the plasma concentration of total lipid 

peroxides.361  Consistent with that report, healthy men 

participating in a randomized double-blind, placebo-

controlled trial experienced significantly greater plasma 

concentrations of reduced glutathione and significantly 

lower plasma concentrations of lipid peroxidation 

products and protein carbonyls at the end of a 14 km 

run following 10 days of dietary supplementation with 50 

mg of MSM per kg bodyweight.362   

 

Vitamin C 

 Vitamin C is an essential nutrient that must be 

supplied through the diet because humans lack the 

enzyme, gulonolactone oxidase, and therefore cannot 

synthesize vitamin C de novo.363  Ascorbate, the 

dominant form of vitamin C in humans, contains 2 enolic 

hydrogen atoms that provide electrons that are available 

for nonenzymatic transfer to ROS.  The availability of 

two reducing equivalents per molecule of ascorbate 

provides the basis for the antioxidant properties of 

vitamin C, which readily scavenges ROS.364  Oxidized 

ascorbate can be reduced back to ascorbate by transfer 

of its free radical electron to another receptor molecule 

or can be further oxidized to dehydroascorbate.  In turn, 

dehydroascorbate can be recycled to ascorbate or can 

be converted into the excretory end product, 2,3-

diketogulonate.364   

 

 In the cross-sectional Austrian Stroke Prevention 

Study, age-adjusted LTL was directly correlated with the 

plasma ascorbate concentration in elderly men and 

women.365  Articular chondrocytes harvested from 

patients with osteoarthritis responded to ascorbic acid 

with increased production of extracellular matrix 

macromolecules, decreased degradation of extracellular 

matrix macromolecules, decreased production of ROS, 
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and improved maintenance of replicative capacity and 

telomere length.196  These reports are consistent with a 

positive association between vitamin C intake, systemic 

antioxidant status, and telomere preservation.   

 

Vitamin D 

 Vitamin D status, reflected in the serum 

concentration of 25-hydroxycholecalciferol (25-

OHD3),
366,367 itself a reflection of vitamin D intake,368,369 

affects human telomere attrition and cellular aging.  For 

example, in a cross-sectional study of women aged 18 to 

79 years in the UK, age-adjusted LTL was directly 

correlated with the serum 25-OHD3 concentration and, 

compared to concentrations greater than 50 ng/mL, 

concentrations less than 25 ng/mL were associated with 

excessive telomere shortening equivalent to 5 additional 

years of telomere (and cellular) aging.370  In another 

cross-sectional study, among vitamin D-deficient men 

and women, age-adjusted telomere attrition in PBMC 

was directly correlated with the degree of vitamin D 

deficiency.371  In contrast, in a double-blind, 

randomized, placebo-controlled trial, 4 months of dietary 

supplementation with 60,000 IU of vitamin D once 

monthly increased the serum 25-OHD3 concentration 

and was associated with significantly less telomere 

attrition in PBMC.372   

 

Vitamin E 

 Vitamin E is a chain-breaking lipophillic 

antioxidant that reduces the lipid peroxyl radical 

produced during lipid peroxidation, interrupting self-

sustaining sponaneous lipid peroxidation in a chain 

termination event.283  By arresting lipid peroxidation 

cascades, vitamin E also slows human telomere attrition 

and cellular aging.  Freshly harvested human skin 

fibroblasts grown in ex vivo culture exhibited increased 

resistance to H2O2-induced oxidative modification of DNA 

and acceleration of telomere attrition in the presence of 

10-5 M -tocopherol,373 a physiologic concentration 

found in the plasma of adults who do not consume 

supplemental vitamin E.374   

γ-Tocotrienol  

 The tocotrienols (-,β-,γ-,δ-) are a group of 

naturally occurring, bioavailable, fat-soluble derivatives 

of vitamin E that exhibit antioxidant potency similar to or 

greater than that of -tocopherol.375  In a series of 

experiments in which skin fibroblasts were freshly 

harvested from young human foreskins and grown in cell 

culture until they reached senescence, γ-tocotrienol 

alone,376,377 or as a component of a mixture of 

tocotrienols obtained from Malaysian palm oil,378,379 

increased the expression of antioxidant enzymes and of 

proteins required for cell proliferation; decreased ROS 

production, oxidative damage to DNA, and senescence-

associated telomere shortening; and increased the 

number of cells that were released from cell cycle arrest.  

When similarly-obtained cells were cultured with H2O2 

and γ-tocotrienol, telomere shortening and cell cycle 

arrest associated with increased intracellular oxidative 

stress were attenuated.380,381  Coincubation with γ-

tocotrienol also attenuated H2O2-induced cell cycle arrest 

in cultured young human myoblasts.382  These data 

demonstrate that γ-tocotrienol retards telomere attrition 

and cell aging.   

Lutein 

 The xanthophyllic carotenoid phytonutrient, 

lutein, accumulates in the macula lutea of the human 

retina.383  In addition to causing the yellow color of that 

part of the eye, lutein protects the retina from the 

oxidizing effects of some of the ultraviolet light entering 

the eye.383  In healthy women, compared to placebo, 

dietary supplementation with lutein (10 mg daily) for 12 

weeks reduced by half the degree of epidermal lipid 

peroxidation while the resistance to ultraviolet light-

induced erythema was increased 4- to 5-fold.384  The 

antioxidant properties of lutein were evident in the cross-

sectional Austrian Stroke Prevention Study, in which age-

adjusted LTL was directly correlated with the serum 

lutein concentration in elderly men and women.365  

These results demonstrate that dietary lutein increases 

systemic antioxidant capacity and resistance to 

ultraviolet light-induced oxidative damage and 

contributes to telomere preservation.   
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Superoxide dismutase 

 SOD is an endogenous enzyme that reduces the 

superoxide anion to produce H2O2 (which is then 

reduced to H2O and O2 by catalase).283,385  While the 

superoxide anion stimulates the oxidative drive toward 

cellular senescence,130 its detoxification can promote 

delay of cellular senescence.  For example, exposing 

human fibroblasts to exogenous SOD significantly 

reduced both the production of lipid peroxides and the 

rate of subsequent telomere shortening.386  There also 

is a report that cells that are approaching senescence 

can be “cleared” by SOD-initiated conversion to the 

apoptotic pathway.387   

Conclusions 

 Cellular oxidative stress accelerates telomere 

attrition and promotes cellular aging.  Oxidatively 

damaged DNA predisposes individual cells to become 

senescent.  The accumulation of senescent cells 

progressively impairs physiological functioning, is 

associated with degenerative diseases, and characterizes 

biological aging.  Premature biological aging impairs 

health and diminishes the quality of life.  Increasing the 

intakes of antioxidant-rich fruits and vegetables and 

supplementing the diet with -lipoic acid, astaxanthin, 

EPA, DHA, trans-resveratrol, N-acetylcysteine, 

methylsulfonylmethane, lutein, vitamin C, vitamin D, 

vitamin E, and γ-tocotrienol may decrease cellular 

oxidative stress and decelerate biological aging.   
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Abbreviations:   

8-OHdG, 8-oxyguanosine; 

8-oxo-dG, 8-oxyguanosine; 

25-OHD3, 25-hydroxycholecalciferol; 

ALT, alternative lengthening of telomeres; 

CDK4, cyclin-dependent kinase-4; 

CDK6, cyclin-dependent kinase-6; 

CDKN1A, cyclin-dependent kinase inhibitor 1A; 

CI, confidence interval; 

COPD, chronic obstructive pulmonary disease; 

Dab2, diasabled adaptor protein 2; 

DDR, DNA damage response; 

DDT, dichlorodiphenyltrichloroethane; 1,1,-trichloro-2,2-

bis-chlorophenylethane; 

DHA, docosahexaenoic acid; 

EPA, eicosapentaenoic acid; 

GADD45, growth arrest and DNA-damage inducible 

protein 45; 

GRB2, growth factor receptor-bound protein 2; 

H2O2, hydrogen peroxide; 

HNE, 4-hydroxynonenal; 

HO-1, heme oxygenase-1; 

LDL, low-density lipoprotein; 

LTL, mean leukocyte telomere length; 

MAPK14, mitogen-activated protein kinase 14; 

MDA, malondialdehyde; 

MSM, methylsulfonylmethane; 

p21, cyclin-dependent kinase inhibitor 1A; 

p53, tumor suppressor protein 53; 

PBMC, peripheral blood mononuclear cells; 

Rb, retinoblastoma tumor suppressor protein; 

ROS, reactive oxygen species; 

Src, steroid receptor coactivator; 

SOD, superoxide dismutase; 

TBARS, thiobarbituric acid reactive substances; 
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TERC, RNA component of telomerase; 

TERT, catalytic subunit of telomerase; 

TGF-β, transforming growth factor-β; 

TGFBR2, transforming growth factor-β receptor 2; 

TNF-, tumor necrosis factor- 

 

Note: Prior to undertaking a program of dietary 

supplementation, individuals should consult with a 

professional nutritionist or other healthcare 

professional trained in nutritional therapeutics. 
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