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Background 

 In 1924 Heyrovsky found that current at a mercury 

electrode was not directly proportional to the applied 

voltage, but there was presence of an  extra-current 

determined by the oxidisable chemicals present in the 

solution. Such extra current, that is proportional to the 

concentration of the compound(s) oxidized and/or reduced, 

is called polarographic current when obtained at a mercury 

electrode, is called voltammetric current when obtained at 

all other types of electrodes [1, 2].  

 Different types of voltammetric techniques             

are available the most common of which are                 

chrono-amperometry linear voltammetry, cyclic 

voltammetry, and pulse voltammetry [3,5]. 

 These methodologies are mainly based on the 

application of a “dynamic” oxidation or oxido-reduction [ox 

- red] potential and the resulting analysis of electrons 

“freed” by the chemical(s) under analysis (see Figure 1). 

Technique 

 Voltammetric measurements are taken with a 

three-electrode potentiostat system made of a silver/silver 

chloride (Ag/AgCl) reference electrode, a copper or silver 

wire auxiliary (counter) electrode both approximately 100 

μm in diameter and a working electrode (see Figure 2). 

Nowadays, the working electrode is  mainly a carbon fiber 

micro electrode (figure 1). 

Electrodes for Voltammetry 

Different types of voltammetric electrodes have 

been developed since 1969, the most performing  type 

appear to be the carbon based electrodes and in particular 

the carbon fiber - micro electrode (µCFE) (see Figure 3) 

[3,5,6]. 

The association of voltammetry with these 

electrodes become an electrochemical methodology 
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Figure 2. schematic representation of the three-electrode potential system [left] and 

the reference and auxiliary electrodes (modified from ref 6 with permission). 

Figure 1. voltammetry principle and schematic representation of the                

carbon fiber micro electrode (modified from ref 5 with permission). 
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allowing continuous, in real time and in situ detection of 

oxidizable chemicals.  

The turning point of the use of these  micro-sensors 

has been the application of a variety of electrical pre-

treatments that are  applied to the sensors before use. This 

has indeed improved drastically sensitivity and selectivity           

for analysis of electro-active chemicals and this in particular 

when the electrochemical methods of normal pulse as well as 

differential pulse voltammetry are employed [7 – 10]. Then, 

evolutions on pre-treatment of the µCFE have also been 

proposed. In particular, in addition to the electrical pre-

treatment, a chemical  pre-treatment consists in coating the 

protruding active tip of the micro sensor with Nafion (Sigma). 

Nafion  is a sulphonated polymer repelling acids while 

attracting bases as it is negatively charged. This electrode is 

then called Nafion µCFE and it allows selective detection of 

dopamine and serotonin in vitro as well as in vivo with a 

greater sensitivity for the latter [13]. Further development of 

such chemical pre-treatment is the coating with a mixture of 

Nafion and Crown ether (Sigma). The reresulting sensor is 

called NaCro µCFE and shows an improved sensitivity for the 

selective detection of these amines [14] and in particular that 

of dopamine [15].  

Differential Pulse Voltammetry (DPV) 

DPV combines aspects of chronoamperometry and 

linear sweep voltammetry and exhibits high selectivity and 

sensitivity. Small voltage pulses of a constant amplitude (20-

50 mV) are superimposed 3-5 times per second upon a linear 

voltage ramp (see Figure 4). The current is sampled 

immediately before (iA) a pulse and subtracted from the 

current at the end of the pulse (iB), then the difference iB - iA 

is expressed in terms of potential. This consents to DPV to 

combines the main advantage of chronoamperometry 

(suppression of charging current) with the resolution of 

   NOWADAYS                 YEARS ‘90  YEARS ‘80 

Figure 3. schematic representation of the evolution upon time of the manufacture of the 

carbon fiber micro electrode used as working electrode for voltammetry. A: is the                 

conductive wire, B: resin alone or D: mixed with graphite paste. E is the carbon fiber that 

can vary between 6, 7, 10, 30 μm diameter. * is the protruding tip of the carbon fiber 

from the glass capillary (C). The length of the tip can vary from 0.1mm up to 1- 2mm in 

function of the size of the brain area monitored or the biological tissue analyzed, i.e.        

aortic(11), gastric tissue (12) (modified from ref 5 with permission). 
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sweep voltammetry, as it performs a local differentiation of 

the voltammogram obtained by linear voltammetry. The 

overlap between two oxidisable compounds is eliminated 

providing that they oxidize at sufficiently distinct potentials 

(at least 50-100 mV between both). Thus, the oxidation of a 

compound produces a sharp peak rather than the broad peak 

or plateau of linear sweep voltammetry, resulting in higher 

resolution [16]. 

The association of DPV with pre-treated µCFE 

appears to be the best methodology for rapid in situ analysis 

of electro-active compounds. No other combination of 

electrode and voltammetric method allows the same 

sensitivity with high resolution between oxidizable chemicals 

and in particular: 

i) in vitro, with the active tip of the sensor immersed in 

buffered solution [7, 17, 3]; 

ii) ex vivo, with the active tip of the sensing electrode in 

contact with several tissue such as brain  slices [18,19], the 

endothelium of rat aortic rings for detection of nitric oxide 

and nitrites [11, 20, 21] or in blood, and in particular in 

platelet-rich plasma (PRP) and/or in isolated platelet (IP) [22] 

as well as in gastric tissue for detection of peptides [12]; 

iii) in vivo, in brain extracellular fluid when the                    

sensor is stereotactically implanted in discrete brain      areas 

of anesthetized as well as  freely moving  animals [4,10,23]. In 

particular, in vivo the DPV methodology associated with 

carbon fiber micro electrodes (DPV-μCFE) becomes an 

advanced approach to monitoring changes in monoamine 

release and their metabolism.  Indeed, the method fulfills 

many of the criteria required to monitor specific compounds 

in the extracellular fluid [5] in brief: 

• The undersized probe allows sampling a region of 

approximately 10-6 mm3 volume  i.e. there is high 

anatomical resolution of the site of measurement within 

discrete brain areas of rodents, with minimal damage to 

the nervous tissue.  

• The method allows rapid, repeated                     

measurements with accurate time resolution in vivo, in 

situ in real time without requiring perfusion, sample 

preparation, chromatographic separation or radio-

labeled transmitter supplies. This is the fundamental 

difference between voltammetry and the perfusion 

techniques such as  micro-dialysis [24, 25].  

• The association DPV - μCFE can be performed in vivo in 

Figure 4. In Differential pulse voltammetry the applied potential is A: a linearly increasing ramp 

upon which small pulses of amplitude ΔV are superimposed. B: two measurements are made for 

each pulse; one just before the pulse [iA] and one just before the end of the single pulse [iB], 

to yield the differential current value ΔI. C: the differential current ΔI is reported against the 

applied potential V to give the peak-shaped voltammogram (peak). D: in vivo, i.e. in rat stria-

tum,  DPV monitoring the peaks of dopamine [DA] and serotonin [5-HT] at approximately 10mV 

and 200mV, respectively [h: size of the peak in nanoAmperes [nA].  
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conscious freely moving animals. This solves the  

problems associated with anesthetics  and allows 

correlations between neuronal activity and behavior  [5, 

6].  

Pharmacological experiments performed with DPV - 

μCFE have indeed demonstrated that the following chemicals 

can be selectively monitored in vivo in brain areas: 

• Ascorbate, noradrenaline and/or dopamine                 and 

the metabolites DOPAC, homovanillic acid,             3-

methoxytyramine  [26 - 29];  

• Uric acid, [30];  

• 5-OH-indoles (i.e.serotonin and its metabolite                  5

-OH-indolacetic acid) [8, 10, 13, 23].  

In addition to the detection of monoamine release 

and their metabolism, in particular those of dopamine and 

serotonin, other electro-active chemicals have been 

successively detected with the association DPV - μCFE in vitro 

as well as in vivo  as shown in figure 5. In particular, 

melatonin [31, 32] nitric oxide and nitrites [21, 33, 34] have 

been monitored between 500 and 700mV oxidation 

potential. Furthermore, neuropeptides containing electro-

active amino acids such as tryptophan, cysteine, tyrosine 

appear to be electrochemically active in vitro; their oxidation 

potentials occur between +600 and +900mV [35 - 37] so that 

they are well demarcated from the selective DPVoltammetric 

oxidation peaks linked to the monoamines, the related 

metabolites and the other compounds mentioned above. 

Thus, the associated peptidergic oxidation signal has been 

called Peak  5 and it has been demonstrated that it is linked 

to the in situ oxidation of somatostatin (SRIF) [35, 37], 

cholecystokinin (CCK) [38 - 40] or neuropeptide Y  (NPY) [41] 

depending on the discrete brain region analyzed. Hydrogen 

peroxide (H2O2) was also successively monitored in vivo, in 

situ and in real time in rat brain at approximately 1000mV 

[42]. 

Variations of the pulse polarography technique have 

also been proposed. In particular Differential Square Pulse 

Conditioning Voltammetry has been introduced since it is 

permitting longer “life” to the micro sensor when used in vivo 

[43, 44]. Another variant is Short Range Differential Pulse 

Polarography that couples sensitivity and selectivity with very 

rapid measurement of endogenous chemicals [45, 46]. Again, 

Differential Pulse Stripping Voltammetry, characterized by the 

addition to a DPV scan of a conditioning potential followed by 

a cleaning potential,  permits nearly continuous measure-

ments without loss of sensitivity. This is a clear advantage 

when one need to combine the analysis of behavior with 

related changes of neurotransmitters, for instance. 

Finally, a very recent achievement of the association 

DPV - μCFE is the evidence of the feasibility of monitoring 

Lactic Acid both in vitro and in vivo in the frontal cortex of 

rodents at the selective oxidation potential +1.5 Volts [47] 

(see Figure 5).  

It appears therefore evident that this electrochemi-

cal methodology is still evolving in detecting a variety of  

chemicals, at the same time as presenting a range of 

advantages over methods based on the preparation of 

samples and/or separation steps. Indeed, it allows rapid, 

Figure 5. Electro-active compounds measurable at selective oxidation potentials in vitro as well 

as in vivo with the association DPV - µCFE (modified from ref 5 with permission).. 
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direct, concomitant finding of different chemicals based upon 

specific oxidative (or red-ox) potentials either in vitro, ex vivo 

and in vivo conditions [48].  

Such a flexibility of application is illustrated by the 

feasibility to couple this methodology with behavioral 

observations  [49], with electrophysiological recordings, for 

example of the sleep-awake cycle [23] as well as with in vivo 

cell firing [36, 50, 51].  

A particular example of such flexibility of utilization 

is the feasibility to apply the methodology in physiologic as 

well as pathological conditions, thus  proposing selective 

mechanisms of actions of the neurotransmitters that can be 

monitored in vivo, in situ and in real time. This, taken 

together with the recent improvement in the methodology 

permitting DPVoltammetric analysis in telemetric – wireless 

conditions, thus allowing electrochemical studies in 

absolutely freely moving conditions [52] may help in the 

understanding of cerebral diseases and possibly in the 

development of pharmacological approaches to tackle them 

[53 – 60].   
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